1
|
Belbasi Z, Petr J, Sevcik J, Jirovsky D, Hrbac J. Electrochemical HPLC Determination of Piperazine Antihistamine Drugs Employing a Spark-Generated Nickel Oxide Nanoparticle-Modified Carbon Fiber Microelectrode. ACS OMEGA 2024; 9:5038-5045. [PMID: 38313503 PMCID: PMC10831984 DOI: 10.1021/acsomega.3c09474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
In this work, we demonstrate a sensitive high-performance liquid chromatography (HPLC) method for the determination of piperazine antihistamine drugs employing innovative electrochemical detection based on a spark-generated nickel oxide nanoparticle-modified carbon fiber microelectrode built into a miniaturized electrochemical detector. The direct carbon fiber-to-nickel plate electrode spark discharge, carried at 0.8 kV DC, with the nickel electrode connected to the negative pole of the high-voltage power supply, provides extremely fast (1 s) in situ tailoring of the carbon fiber microelectrode surface by nickel oxide nanoparticles. It has been found that nickel oxide nanoparticles exhibit an electrocatalytic effect toward the piperazine moiety electrooxidation process, as confirmed by voltammetric experiments, revealing the shift in the peak potential from 1.25 to 1.09 V versus Ag/AgCl. Cetirizine, cyclizine, chlorcyclizine, flunarizine, meclizine, and buclizine were selected as sample piperazine antihistamine drugs, while diclofenac served as an internal standard. The isocratic reversed-phase separation of the above set was achieved within 15 min using an ARION-CN 3 μm column with a binary mobile phase consisting of 50 mM phosphate buffer (pH 3) and methanol (45/55, v/v). The limits of detection (LOD) were within the range of 3.8-120 nM (for cyclizine and buclizine) at E = +1500 mV (vs Ag/AgCl), while the response was linear within the concentration range measured up to 5 μmol L-1. The method was successfully applied to the determination of piperazine antihistamine drugs in spiked plasma samples.
Collapse
Affiliation(s)
- Zeynab Belbasi
- Faculty
of Science, Department of Analytical Chemistry, Palacky University, 17. Iistopadu 12, 771 46 Olomouc, Czech Republic
| | - Jan Petr
- Faculty
of Science, Department of Analytical Chemistry, Palacky University, 17. Iistopadu 12, 771 46 Olomouc, Czech Republic
| | - Juraj Sevcik
- Faculty
of Science, Department of Analytical Chemistry, Palacky University, 17. Iistopadu 12, 771 46 Olomouc, Czech Republic
| | - David Jirovsky
- Faculty
of Science, Department of Analytical Chemistry, Palacky University, 17. Iistopadu 12, 771 46 Olomouc, Czech Republic
| | - Jan Hrbac
- Faculty
of Science, Department of Analytical Chemistry, Palacky University, 17. Iistopadu 12, 771 46 Olomouc, Czech Republic
- Faculty
of Science, Department of Chemistry, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
3
|
Electrochemical Profiling of Plants. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The profiling, or fingerprinting, of distinct varieties of the Plantae kingdom is based on the bioactive ingredients, which are systematically segregated to perform their detailed analysis. The secondary products portray a pivotal role in defining the ecophysiology of distinct plant species. There is a crucial role of the profiling domain in understanding the various features, characteristics, and conditions related to plants. Advancements in variable technologies have contributed to the development of highly specific sensors for the non-invasive detection of molecules. Furthermore, many hyphenated techniques have led to the development of highly specific integrated systems that allow multiplexed detection, such as high-performance liquid chromatography, gas chromatography, etc., which are quite cumbersome and un-economical. In contrast, electrochemical sensors are a promising alternative which are capable of performing the precise recognition of compounds due to efficient signal transduction. However, due to a few bottlenecks in understanding the principles and non-redox features of minimal metabolites, the area has not been explored. This review article provides an insight to the electrochemical basis of plants in comparison with other traditional approaches and with necessary positive and negative outlooks. Studies consisting of the idea of merging the fields are limited; hence, relevant non-phytochemical reports are included for a better comparison of reports to broaden the scope of this work.
Collapse
|
4
|
Wonnenberg P, Cho W, Liu F, Asrat T, Zestos AG. Polymer Modified Carbon Fiber Microelectrodes for Precision Neurotransmitter Metabolite Measurements. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:167507. [PMID: 33927450 PMCID: PMC8081299 DOI: 10.1149/1945-7111/abcb6d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon fiber-microelectrodes (CFMEs) are considered to be one of the standard electrodes for neurotransmitter detection such as dopamine (DA). DA is physiologically important for many pharmacological and behavioral states, but is readily metabolized on a fast, subsecond timescale. Recently, DA metabolites such as 3-methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) were found to be involved in physiological functions, such as movement control and progressive neuro degeneration. However, there is no current assay to detect and differentiate them from DA. In this study, we demonstrate the co-detection of similarly structured neurochemicals such as DA, 3-MT, and DOPAL. We accomplished this through electrodepositing CFMEs with polyethyleneimine (PEI) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymers. This endowed the bare unmodified CFMEs with surface charge, physical, and chemical differences, which resulted in the improved sensitivity and selectivity of neurotransmitter detection. The differentiation and detection of 3-MT, DOPAL, and DA will potentially help further understand the important physiological roles that these dopaminergic metabolites play in vivo.
Collapse
Affiliation(s)
- Pauline Wonnenberg
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Favian Liu
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Thomas Asrat
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
5
|
Bian Z, Fang G, Wang R, Zhan D, Yao Q, Wu Z. A water-soluble boronic acid sensor for caffeic acid based on double sites recognition. RSC Adv 2020; 10:28148-28156. [PMID: 35519105 PMCID: PMC9055677 DOI: 10.1039/d0ra00980f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Due to reversibly and covalently binding with Lewis bases and polyols, boronic acid compounds as fluorescent sensors have been widely reported to recognize carbohydrates, ions, hydrogen peroxide, and so on. However, boronic acid sensors for highly selective recognition of caffeic acid rather than catechol or catechol derivatives have not been reported yet. Herein a novel water-soluble sensor 5c with double recognition sites based on a boronic acid was reported. When 2.3 × 10-4 M of caffeic acid was added, the fluorescence intensity of sensor 5c decreased by 99.6% via inner filter effect (IFE) because its excitation spectrum well overlaps with the absorption spectrum of caffeic acid under neutral condition, while the fluorescence increased or did not change obviously after binding with other analytes including carbohydrates and other catechol derivatives. In addition, the response time to caffeic acid is fast at room temperature, and a high binding constant (9245.7 ± 348.3 M-1) and low LOD (1.81 × 10-6 M) was calculated. Moreover, determination of caffeic acid content in caffeic acid tablets was studied, and the recovery rate is sufficient. Therefore, sensor 5c can be used as a potential tool for detecting biologically significant caffeic acid in real samples.
Collapse
Affiliation(s)
- Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Ran Wang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Dongxue Zhan
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
6
|
Wonnenberg PM, Zestos AG. Polymer-Modified Carbon Fiber Microelectrodes for Neurochemical Detection of Dopamine and Metabolites. ECS TRANSACTIONS 2020; 97:901-927. [PMID: 33953827 PMCID: PMC8096166 DOI: 10.1149/09707.0901ecst] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon-fiber microelectrodes (CFMEs) are considered to be the standard electrodes for neurotransmitter detection. Fast-scan cyclic voltammetry (FSCV), an electro analytical method, has the ability to follow neurochemical dynamics in real time using CFMEs. Improvements in neurochemical detection with CFMEs were previously made through the coating of polymers onto the surface of the carbon-fiber. Polymers such as PEI, PEDOT, and Nafion were electrodeposited onto the surface of the electrodes to enhance neurochemical detection. This work demonstrates applications for enhancements in co-detection of similarly structured neurochemicals such as dopamine, DOPAL, 3-methoxytyramine, DOPAC, and other neurotransmitters. Manipulating the charge and surface structure of the carbon electrode allows for the improvement of sensitivity and selectivity of neurotransmitter detection. The analytes are detected and differentiated by the shape and the peak positions of their respective cyclic voltammograms.
Collapse
Affiliation(s)
- P M Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| | - A G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| |
Collapse
|
7
|
Zhu M, Ye H, Lai M, Ye J, Li R, Zhang W, Liang H, Zhu R, Fan H, Chen S. The gold nanoparticle sensitized pRGO-MWCNTs grid modified carbon fiber microelectrode as an efficient sensor system for simultaneous detection of three dihydroxybenzoic acid isomers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|