1
|
Park KH, Gu DR, Kim MS, Lee SH. Inhibitory Effect of Rosae Multiflorae Fructus Extracts on the Receptor Activator of NF-κB Ligand-Induced Osteoclastogenesis through Modulation of P38- and Ca 2+-Mediated Nuclear Factor of Activated T-Cells Cytoplasmic 1 Expression. J Bone Metab 2020; 27:53-63. [PMID: 32190609 PMCID: PMC7064362 DOI: 10.11005/jbm.2020.27.1.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background Rosae Multiflorae fructus (RMF), known to have anti-inflammatory and antioxidant properties, has been used as a traditional remedy for inflammatory diseases such as arthritis in Eastern Asia. However, its effect on osteoclasts, which play a crucial role in resorptive inflammatory bone diseases, is yet to be elucidated. Methods The effect of extract of RMF (RMF-E) on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis was examined by tartrate-resistant acid phosphatase (TRAP) staining, real-time polymerase chain reaction and western blot analysis. In addition, RANKL-induced Ca2+-oscillation was also investigated. Results RMF-E remarkably inhibited TRAP+-osteoclast and resorptive pit formation in a dose-dependent manner. In addition, the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic, known as pivotal transcription factors for osteoclast formation in vitro and in vivo, and that of the osteoclast differentiation markers such as Acp5, Oscar, CtsK, Atp6v0d2, Tm7sf4, and Nfatc1 were significantly decreased by RMF-E treatment during osteoclastogenesis. The inhibitory effect of RMF-E on RANKL-induced osteoclastogenesis was caused by the suppression of p38 mitogen-activated protein kinase activation, and RANKL-induced Ca2+-oscillation removal via inactivation of Bruton's tyrosine kinase (BTK), and subsequently phospholipase C-γ2. Conclusions RMF-E negatively regulates osteoclast differentiation and formation. These findings suggest the possibility of RMF-E as a traditional therapeutic agent against osteoclast-related bone disorders such as osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- Keun Ha Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Min Seuk Kim
- Department of Oral Physiology, College of Dentistry, Wonkwang University, Iksan, Korea.,Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea.,Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, Korea
| |
Collapse
|
2
|
Zhang Q, Sun X, Yang J, Ding H, LeBrun D, Ding K, Houchen CW, Postier RG, Ambrose CG, Li Z, Bi X, Li M. ZIP4 silencing improves bone loss in pancreatic cancer. Oncotarget 2016; 6:26041-51. [PMID: 26305676 PMCID: PMC4694884 DOI: 10.18632/oncotarget.4667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, General Hospital of The Jinan Military Command, Jinan, Shandong 250031, China.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaotian Sun
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hao Ding
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Drake LeBrun
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Russell G Postier
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Catherine G Ambrose
- Department of Orthopedic Surgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaohong Bi
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Min Li
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Sohn H, Ko Y, Park M, Kim D, Moon YL, Jeong YJ, Lee H, Moon Y, Jeong BC, Kim O, Lim W. Effects of light-emitting diode irradiation on RANKL-induced osteoclastogenesis. Lasers Surg Med 2015; 47:745-55. [DOI: 10.1002/lsm.22413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 01/24/2023]
Affiliation(s)
- HongMoon Sohn
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Youngjong Ko
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Mineon Park
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Donghwi Kim
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Young Lae Moon
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Yeon Joo Jeong
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Hyeonjun Lee
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
| | - Yeonhee Moon
- Department of Dental Hygiene; Chodang University; Jeollanam-do South Korea
| | - Byung-Chul Jeong
- Medical Research Center for Biomineralization Disorders, School of Dentistry; Chonnam National University; Gwangju Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry; Chonnam National University; Bug-Gu Gwangju Korea
| | - Wonbong Lim
- Department of Orthopaedic Surgery; Chosun University Hospital; Dong-Gu Gwangju Korea
- Department of Premedical Program, School of Medicine; Chosun University; Dong-Gu Gwangju Korea
| |
Collapse
|