1
|
Piao X, Kim JW, Hyun M, Wang Z, Park SG, Cho IA, Ryu JH, Lee BN, Song JH, Koh JT. Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways. BMB Rep 2023; 56:545-550. [PMID: 37574806 PMCID: PMC10618074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 08/12/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].
Collapse
Affiliation(s)
- Xianyu Piao
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Woo Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Moonjung Hyun
- Gyeongnam Biohealth Research Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju 52834, Korea
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Suk-Gyun Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - In A Cho
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Ju Han Song
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
2
|
Cho SH, Kim HS, Jung HY, Park JI, Jang YJ, Ahn J, Kim KN. Effect of Ishophloroglucin A Isolated from Ishige okamurae on In Vitro Osteoclastogenesis and Osteoblastogenesis. Mar Drugs 2023; 21:377. [PMID: 37504908 PMCID: PMC10381815 DOI: 10.3390/md21070377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the bone remodeling process. This study aimed to investigate the effect of Ishophloroglucin A (IPA) isolated from Ishige okamurae on the function of osteoclasts and osteoblasts in vitro. First, we demonstrated the effect of IPA on osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW 264.7 cells. IPA inhibited the tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation in RANKL-induced RAW 264.7 cells. Moreover, it inhibited the RANKL-induced osteoclast-related factors, such as TRAP, matrix metalloproteinase-9 (MMP-9), and calcitonin receptor (CTR), and transcription factors, such as nuclear factor of activated T cells 1 (NFATc1) and c-Fos. IPA significantly suppressed RANKL-activated extracellular signal-regulated kinase (ERK), and NF-κB in RAW 264.7 cells. Our data indicated that the ERK and NF-κB pathways were associated with the osteoclastogenesis inhibitory activity of IPA. Next, we demonstrated the effect of IPA on osteoblastogenesis in MG-63 cells. IPA significantly promoted alkaline phosphatase (ALP) activity in MG-63 cells, along with the osteoblast differentiation-related markers bone morphogenetic protein 2 (BMP2), type 1 collage (COL1), p-Smad1/5/8, and Runx2, by activating the MAPK signaling pathways. Taken together, the study indicated that IPA could be effective in treating bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Hye-Yeon Jung
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Jae-Il Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Ekeuku SO, Pang KL, Chin KY. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des Devel Ther 2021; 15:259-275. [PMID: 33519191 PMCID: PMC7837552 DOI: 10.2147/dddt.s287280] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption. METHODS A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered. RESULTS The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats. CONCLUSION Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Osteoclast signaling-targeting miR-146a-3p and miR-155-5p are downregulated in Paget's disease of bone. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165852. [PMID: 32485219 DOI: 10.1016/j.bbadis.2020.165852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRs) are small, non-coding RNA that post-transcriptionally regulate DNA expression. We hypothesized that specific miR profiles may be a feature of overactive osteoclasts in Paget's disease of bone (PDB), a disorder characterized by an increased and disorganized bone remodeling that typically begins with excessive bone resorption. We compared the expression profile of 13 miRs in human osteoclasts differentiated in vitro from peripheral blood mononuclear cells (PBMCs) of patients with PDB (n = 10) or age- and sex- matched healthy subjects (n = 10). We selected 13 miRs for testing, on the basis of their previously reported roles either in human osteoclast differentiation, in bone diseases, or in osteoclast important signaling pathways. From those expression results, 3 miRNAs were further selected for in-vitro studies aiming at modulating miR expression in human cord blood monocyte derived osteoclasts: 2 miRs (miR-146a-3p and miR-155-5p) whose expression was significantly reduced in pagetic osteoclasts, as well as miRNA-133a-3p, stable in PDB relative to controls, but with known regulatory importance within osteoclasts. We demonstrated a positive (miR-133a-3p) or negative (miR-155-5p, miR-146a-3p) impact of those miRs on the formation of osteoclasts and/or their bone resorption capacity in this human model. Signaling pathways were significantly affected, including p38 MAP-kinase (miR-133a-3p), RANKL-induced TRAF6/NFκB signaling (miR-146a-3p), and MITF expression (miR-155-5p). Osteoclast miRNA profiles might have an important value to yield significant new insights into the osteoclast phenotype in PDB and in other bone diseases with hyperactive osteoclasts.
Collapse
|
5
|
The Coumarin Derivative 5'-Hydroxy Auraptene Suppresses Osteoclast Differentiation via Inhibiting MAPK and c-Fos/NFATc1 Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9395146. [PMID: 31976330 PMCID: PMC6949687 DOI: 10.1155/2019/9395146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023]
Abstract
The phytochemical substances, coumarin derivatives, have demonstrated antiresorptive bone effects by suppressing osteoclast differentiation in vitro and in vivo. Recently, we have identified 5′-hydroxy auraptene (5′-HA), a coumarin derivative isolated from Lotus lalambensis Schweinf, as a novel stimulator for osteoblast differentiation. In this study, we investigated the effect of 5′-HA on osteoclast differentiation of mouse bone marrow (BM) cells. The effect of 5′-HA on BM cell proliferation and osteoclast differentiation was determined by measuring cell viability and tartrate-resistant acid phosphatase (TRAP) enzyme activity, quantification of TRAP+ multinucleated cells (TRAP+MNCs), and quantitative real-time PCR (qPCR) of osteoclastic gene expression. Regulation of NF-κB, c-Fos/NFATc1, and MAPK signaling pathways by 5′-HA during osteoclastogenesis was measured by the NF-κB reporter assay and Western blot analysis. 5′-HA significantly suppresses the receptor activator of NF-κB ligand (RANKL) induced osteoclast differentiation of BM cells in a dose-dependent manner. Consistently, treatment of BM cells with 5′-HA significantly inhibited RANKL-induced activation of NF-κB and c-Fos/NFATc1 pathways in a dose-dependent manner. Furthermore, RANKL-induced phosphorylation of ERK1/2, p-38, and JNK was significantly inhibited by 5′-HA in BM cells. In conclusion, we identified 5′-HA as a novel coumarin derivative that suppresses RANKL-induced osteoclastogenesis via inhibiting c-Fos/NFATc1 and MAPK signaling pathways.
Collapse
|
6
|
Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. Int J Mol Sci 2018; 19:ijms19113698. [PMID: 30469456 PMCID: PMC6275021 DOI: 10.3390/ijms19113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Wear particle-induced aseptic prosthetic loosening is a major complication associated with total joint arthroplasty (TJA). A growing body of evidence suggests that receptor activator of nuclear factor κ-B ligand (RANKL)-stimulated osteoclastogenesis and bone resorption are responsible for peri-implant loosening. Thus, agents which attenuate excessive osteoclast differentiation and function have been considered to offer therapeutic potential for prolonging the life of TJA implants. Jatrorrhizine hydrochloride (JH), a major protoberberine alkaloid isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, and antihypercholesterolemic and neuroprotective activities. However, its effects on osteoclast biology remain unknown. Here, we found that JH inhibited RANKL-induced osteoclast formation and bone resorption in vitro and exerted protection against titanium (Ti) particle-induced osteolysis in vivo. Biochemical analysis demonstrated that JH suppressed RANKL-induced activation of MAPKs (p38 and ERK) which down-regulated the production of NFATc1 and NFATc1-regulated osteoclastic marker genes, such as TRAP, CTR and CTSK. Collectively, our findings suggest that JH may be a promising anti-osteoclastogenesis agent for treating periprosthetic osteolysis or other osteoclast-related osteolytic diseases.
Collapse
|
7
|
Kim B, Lee JH, Jin WJ, Kim HH, Ha H, Lee ZH. JN-2, a C-X-C motif chemokine receptor 3 antagonist, ameliorates arthritis progression in an animal model. Eur J Pharmacol 2018; 823:1-10. [DOI: 10.1016/j.ejphar.2018.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
|