1
|
Kim YK, Kim SY, Lee SH, Lee MH, Lee KB. Stabilized Loading of Hyaluronic Acid-Containing Hydrogels into Magnesium-Based Cannulated Screws. ACS Biomater Sci Eng 2019; 6:715-726. [PMID: 33463217 DOI: 10.1021/acsbiomaterials.9b01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cannulated screws have a structure for inserting a guide wire inside them to effectively correct complicated fractures. Magnesium, an absorbable metal used to manufacture cannulated screws, may decompose in the body after a certain period of implantation. The hydrogel formed by hyaluronic acid (HA) and polygalacturonic acid (PGA) has been used into Mg-based cannulated screws to prevent bone resorption owing to the rapid corrosion of Mg with unfavorable mechanical properties and a high ambient pH. In addition, Ca ions were added to the gel for cross-linking the carboxyl groups to modify the gelation rate and physical properties of the gel. The developed hydrogels were injected into the Mg-based cannulated screws, after which they released HA and Ca. The possibility of the application of this system as a cannulated screw was evaluated based on the corrosion resistance, gel degradation rate, HA release, toxicity toward osteocytes, and experiments involving the implantation of the screws into the femurs of rats. Ca ions first bound to PGA and delayed the gelation time and dissolution rate. However, they interfered with HA binding and increased the elution of HA at the beginning of gel degradation. Ca(NO3)2 concentrations higher than 0.01 M and low pH environments inhibited osteoblast differentiation and proliferation, owing to the elution of HA from the hydrogel. On the other hand, when the HA hydrogel with a proper amount of Ca was inserted into a magnesium screw, the degradation of Mg was delayed, and the presence of the gel contributed to new bone formation and osteocyte expansion.
Collapse
Affiliation(s)
- Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Se Hwan Lee
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeon Ju 561-756, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Kwang-Bok Lee
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeon Ju 561-756, South Korea
| |
Collapse
|
2
|
Kim J, Gilbert JL. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro. J Biomed Mater Res A 2018; 106:1428-1439. [PMID: 29322635 DOI: 10.1002/jbm.a.36334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/07/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Abstract
Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm2 ) and not for higher cell densities (20,000-30,000 cells/cm2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018.
Collapse
Affiliation(s)
- Jua Kim
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634.,Clemson-Medical University of South Carolina Combined Program in Bioengineering, Charleston, South Carolina, 20425
| |
Collapse
|
3
|
Galow AM, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem Biophys Rep 2017; 10:17-25. [PMID: 28955732 PMCID: PMC5614624 DOI: 10.1016/j.bbrep.2017.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/09/2023] Open
Abstract
We investigated the effects of alkaline pH on developing osteoblasts. Cells of the osteoblast-like cell line MC3T3-E1 were initially cultured for six days in HEPES-buffered media with pH ranging from 7.2 to 9.0. Cell count, cellular WST-1 metabolism, and ATP content were analyzed. The three parameters showed a pH optimum around pH 8.4, exceeding the recommended buffer range of HEPES at the alkaline flank. Therefore, only pH 7.2, 7.4, 7.8, and 8.4 media were used in more elaborate, daily investigations to reduce the effects of pH change within the pH control intervals of 24 h. All parameters exhibited similar pH behaviors, roughly showing increases to 130% and 230% at pH 7.8 and 8.4, as well as decreases to 70% at pH 7.2 when using the pH 7.4 data for reference. To characterize cell differentiation and osteoblastic cell function, cells were cultured at pH 7.4 and under alkaline conditions at pH 7.8 and 8.4 for 14 days. Gene expression and mineralization were evaluated using microarray technology and Alizarin staining. Under alkaline conditions, ATF4, a regulator for terminal differentiation and function as well as DMP1, a potential marker for the transition of osteoblasts into osteocytes, were significantly upregulated, hinting at an accelerated differentiation process. After 21 days, significant mineralization was only detected at alkaline pH. We conclude that elevated pH is beneficial for the cultivation of bone cells and may also provide therapeutic value in bone regeneration therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Chair for Biophysics, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Koczan
- Institute of Immunology, Schillingallee 70, University of Rostock, 18055 Rostock, Germany
| | - Sebastian M. Bonk
- Chair for Biophysics, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany
| | - Werner Baumann
- Chair for Biophysics, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany
| | - Jan Gimsa
- Chair for Biophysics, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany
| |
Collapse
|
4
|
Fliefel R, Popov C, Tröltzsch M, Kühnisch J, Ehrenfeld M, Otto S. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH. J Craniomaxillofac Surg 2016; 44:715-24. [PMID: 27085985 DOI: 10.1016/j.jcms.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. OBJECTIVE To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). METHODS We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. RESULTS Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. CONCLUSION pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis.
Collapse
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Alexandria-University, Alexandria, Egypt.
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Tröltzsch
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
5
|
AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 2016; 30:1300-11. [PMID: 26740503 DOI: 10.1177/0885328215625759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration.
Collapse
Affiliation(s)
- Sarah T AbdulQader
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ismail A Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kannan P Thirumulu
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hanafi Ismail
- School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuliani Mahmood
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|