1
|
Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:211-238. [PMID: 33834439 DOI: 10.1007/978-981-33-6064-8_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sangyun Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Moosung Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Juntaek Oh
- Department of Physics, KAIST, Daejeon, South Korea
| | - Su-A Yang
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon, South Korea. .,KAIST Institute Health Science and Technology, Daejeon, South Korea. .,Tomocube Inc., Daejeon, South Korea.
| |
Collapse
|
2
|
Lee YJ, Cintora P, Arikkath J, Akinsola O, Kandel M, Popescu G, Best-Popescu C. Quantitative assessment of neural outgrowth using spatial light interference microscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66015. [PMID: 28655053 PMCID: PMC5482290 DOI: 10.1117/1.jbo.22.6.066015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/30/2017] [Indexed: 05/12/2023]
Abstract
Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell’s computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.
Collapse
Affiliation(s)
- Young Jae Lee
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| | - Pati Cintora
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| | - Jyothi Arikkath
- University of Nebraska Medical Center, Munroe-Meyer Institute, Omaha, Nebraska, United States
| | - Olaoluwa Akinsola
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Mikhail Kandel
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Catherine Best-Popescu
- University of Illinois at Urbana-Champaign, Department of Bioengineering, Cellular Neuroscience and Imaging Laboratory, Urbana, Illinois, United States
| |
Collapse
|