1
|
Shahan R, Nolan TM, Benfey PN. Single-cell analysis of cell identity in the Arabidopsis root apical meristem: insights and opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6679-6686. [PMID: 34018001 PMCID: PMC8513161 DOI: 10.1093/jxb/erab228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 05/06/2023]
Abstract
A fundamental question in developmental biology is how the progeny of stem cells become differentiated tissues. The Arabidopsis root is a tractable model to address this question due to its simple organization and defined cell lineages. In particular, the zone of dividing cells at the root tip-the root apical meristem-presents an opportunity to map the gene regulatory networks underlying stem cell niche maintenance, tissue patterning, and cell identity acquisition. To identify molecular regulators of these processes, studies over the last 20 years employed global profiling of gene expression patterns. However, these technologies are prone to information loss due to averaging gene expression signatures over multiple cell types and/or developmental stages. Recently developed high-throughput methods to profile gene expression at single-cell resolution have been successfully applied to plants. Here, we review insights from the first published single-cell mRNA sequencing and chromatin accessibility datasets generated from Arabidopsis roots. These studies successfully reconstruct developmental trajectories, phenotype cell identity mutants at unprecedented resolution, and reveal cell type-specific responses to environmental stimuli. The experimental insight gained from Arabidopsis paves the way to profile roots from additional species.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
2
|
Thibivilliers S, Libault M. Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics. FRONTIERS IN PLANT SCIENCE 2021; 12:696811. [PMID: 34421948 PMCID: PMC8375048 DOI: 10.3389/fpls.2021.696811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 05/05/2023]
Abstract
Plants are composed of cells that physically interact and constantly adapt to their environment. To reveal the contribution of each plant cells to the biology of the entire organism, their molecular, morphological, and physiological attributes must be quantified and analyzed in the context of the morphology of the plant organs. The emergence of single-cell/nucleus omics technologies now allows plant biologists to access different modalities of individual cells including their epigenome and transcriptome to reveal the unique molecular properties of each cell composing the plant and their dynamic regulation during cell differentiation and in response to their environment. In this manuscript, we provide a perspective regarding the challenges and strategies to collect plant single-cell biological datasets and their analysis in the context of cellular interactions. As an example, we provide an analysis of the transcriptional regulation of the Arabidopsis genes controlling the differentiation of the root hair cells at the single-cell level. We also discuss the perspective of the use of spatial profiling to complement existing plant single-cell omics.
Collapse
Affiliation(s)
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
4
|
Tripathi RK, Wilkins O. Single cell gene regulatory networks in plants: Opportunities for enhancing climate change stress resilience. PLANT, CELL & ENVIRONMENT 2021; 44:2006-2017. [PMID: 33522607 PMCID: PMC8359182 DOI: 10.1111/pce.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Global warming poses major challenges for plant survival and agricultural productivity. Thus, efforts to enhance stress resilience in plants are key strategies for protecting food security. Gene regulatory networks (GRNs) are a critical mechanism conferring stress resilience. Until recently, predicting GRNs of the individual cells that make up plants and other multicellular organisms was impeded by aggregate population scale measurements of transcriptome and other genome-scale features. With the advancement of high-throughput single cell RNA-seq and other single cell assays, learning GRNs for individual cells is now possible, in principle. In this article, we report on recent advances in experimental and analytical methodologies for single cell sequencing assays especially as they have been applied to the study of plants. We highlight recent advances and ongoing challenges for scGRN prediction, and finally, we highlight the opportunity to use scGRN discovery for studying and ultimately enhancing abiotic stress resilience in plants.
Collapse
Affiliation(s)
- Rajiv K. Tripathi
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Olivia Wilkins
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
5
|
Alvarez JM, Brooks MD, Swift J, Coruzzi GM. Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:105-131. [PMID: 33667112 PMCID: PMC9312366 DOI: 10.1146/annurev-arplant-081320-090914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
Collapse
Affiliation(s)
- Jose M Alvarez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, US Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801, USA
| | - Joseph Swift
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
6
|
Seyfferth C, Renema J, Wendrich JR, Eekhout T, Seurinck R, Vandamme N, Blob B, Saeys Y, Helariutta Y, Birnbaum KD, De Rybel B. Advances and Opportunities in Single-Cell Transcriptomics for Plant Research. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:847-866. [PMID: 33730513 PMCID: PMC7611048 DOI: 10.1146/annurev-arplant-081720-010120] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Single-cell approaches are quickly changing our view on biological systems by increasing the spatiotemporal resolution of our analyses to the level of the individual cell. The field of plant biology has fully embraced single-cell transcriptomics and is rapidly expanding the portfolio of available technologies and applications. In this review, we give an overview of the main advances in plant single-cell transcriptomics over the past few years and provide the reader with an accessible guideline covering all steps, from sample preparation to data analysis. We end by offering a glimpse of how these technologies will shape and accelerate plant-specific research in the near future.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jim Renema
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jos R Wendrich
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Bernhard Blob
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Viikki Plant Science Centre, HiLIFE/Organismal and Evolutionary Biology Research Program, Institute of Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
| | - Yrjo Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Viikki Plant Science Centre, HiLIFE/Organismal and Evolutionary Biology Research Program, Institute of Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA;
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Marand AP, Chen Z, Gallavotti A, Schmitz RJ. A cis-regulatory atlas in maize at single-cell resolution. Cell 2021; 184:3041-3055.e21. [PMID: 33964211 DOI: 10.1101/2020.09.27.315499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 05/22/2023]
Abstract
cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.
Collapse
Affiliation(s)
| | - Zongliang Chen
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrea Gallavotti
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|