1
|
Li X, Chang J, Chen S, Wang L, Yau TO, Zhao Q, Hong Z, Ruan J, Duan G, Gao S. Genomic Feature Analysis of Betacoronavirus Provides Insights Into SARS and COVID-19 Pandemics. Front Microbiol 2021; 12:614494. [PMID: 33815307 PMCID: PMC8010690 DOI: 10.3389/fmicb.2021.614494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
In December 2019, the world awoke to a new betacoronavirus strain named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Betacoronavirus consists of A, B, C and D subgroups. Both SARS-CoV and SARS-CoV-2 belong to betacoronavirus subgroup B. In the present study, we divided betacoronavirus subgroup B into the SARS1 and SARS2 classes by six key insertions and deletions (InDels) in betacoronavirus genomes, and identified a recently detected betacoronavirus strains RmYN02 as a recombinant strain across the SARS1 and SARS2 classes, which has potential to generate a new strain with similar risk as SARS-CoV and SARS-CoV-2. By analyzing genomic features of betacoronavirus, we concluded: (1) the jumping transcription and recombination of CoVs share the same molecular mechanism, which inevitably causes CoV outbreaks; (2) recombination, receptor binding abilities, junction furin cleavage sites (FCSs), first hairpins and ORF8s are main factors contributing to extraordinary transmission, virulence and host adaptability of betacoronavirus; and (3) the strong recombination ability of CoVs integrated other main factors to generate multiple recombinant strains, two of which evolved into SARS-CoV and SARS-CoV-2, resulting in the SARS and COVID-19 pandemics. As the most important genomic features of SARS-CoV and SARS-CoV-2, an enhanced ORF8 and a novel junction FCS, respectively, are indispensable clues for future studies of their origin and evolution. The WIV1 strain without the enhanced ORF8 and the RaTG13 strain without the junction FCS "RRAR" may contribute to, but are not the immediate ancestors of SARS-CoV and SARS-CoV-2, respectively.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Chang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Shunmei Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Liangge Wang
- Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tung On Yau
- John Van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhangyong Hong
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jishou Ruan
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Khan MT, Ali S, Khan AS, Muhammad N, Khalil F, Ishfaq M, Irfan M, Al-Sehemi AG, Muhammad S, Malik A, Khan TA, Wei DQ. SARS-CoV-2 Genome from the Khyber Pakhtunkhwa Province of Pakistan. ACS OMEGA 2021; 6:6588-6599. [PMID: 33748571 PMCID: PMC7944396 DOI: 10.1021/acsomega.0c05163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 05/08/2023]
Abstract
Among viral outbreaks, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest ones, and it has triggered the global COVID-19 pandemic. In Pakistan, until 5th September 2020, a total of 6342 deaths have been reported, of which 1255 were from the Khyber Pakhtunkhwa (KPK) province. To understand the disease progression and control and also to produce vaccines and therapeutic efforts, whole genome sequence analysis is important. In the current investigation, we sequenced a single sample of SARS-CoV-2 genomes (accession no. MT879619) from a male suspect from Peshawar, the KPK capital city, during the first wave of infection. The local SARS-CoV-2 strain shows some unique characteristics compared to neighboring Iranian and Chinese isolates in phylogenetic tree and mutations. The circulating strains of SARS-CoV-2 represent an intermediate evolution from China and Iran. Furthermore, eight complete whole genome sequences, including the current Pakistani isolates which have been submitted to Global Initiative on Sharing All Influenza Data (GSAID), were also investigated for specific mutations and characters. Some novel mutations [NSP2 (D268del), NSP5 (N228K), and NS3 (F105S)] and specific characters have been detected in the coding regions, which may affect viral transmission, epidemiology, and disease severity. The computational modeling revealed that a majority of these mutations may have a stabilizing effect on the viral protein structure. In conclusion, the genome sequencing of local strains is important for better understanding the pathogenicity, immunogenicity, and epidemiology of causative agents.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular
Biology and Biotechnology (IMBB), The University
of Lahore, KM Defence Road, Lahore 58810, Pakistan
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
| | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology, Bannu Road, Near Jarma Bridge, Kohat 26000, Pakistan
| | - Noor Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Bannu Road, Near Jarma Bridge, Kohat 26000, Pakistan
| | - Faiza Khalil
- Department of Biochemistry, Khyber Medical
College, Peshawar 25160, Pakistan
- University
of Peshawar, Road No.
2, Rahat Abad, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ishfaq
- Centre for Omic Sciences, Islamia
College Peshawar. Grand Trunk Road, Rahat Abad, Peshawar 25120, Pakistan
| | - Muhammad Irfan
- Department
of Oral Biology, College of Dentistry, University
of Florida, Gainesville, Florida 32611, United States
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shabbir Muhammad
- Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| | - Arif Malik
- Institute of Molecular
Biology and Biotechnology (IMBB), The University
of Lahore, KM Defence Road, Lahore 58810, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism,
Shanghai−Islamabad−Belgrade Joint Innovation Center
on Antibacterial Resistances, Joint International Research Laboratory
of Metabolic & Developmental Sciences and School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
3
|
Dimonaco NJ, Salavati M, Shih BB. Computational Analysis of SARS-CoV-2 and SARS-Like Coronavirus Diversity in Human, Bat and Pangolin Populations. Viruses 2020; 13:E49. [PMID: 33396801 PMCID: PMC7823979 DOI: 10.3390/v13010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international "CoronaHack" in April 2020, we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2; n = 163), bat (bat-CoV; n = 215) and pangolin (pangolin-CoV; n = 7) available in public repositories. We have also noted the pangolin-CoV isolate MP789 to bare stronger resemblance to SARS-CoV-2 than other pangolin-CoV. Following de novo gene annotation prediction, analyses of gene-gene similarity network, codon usage bias and variant discovery were undertaken. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Last, we have characterised several high impact variants (in-frame insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and may be highlighting loci of potential functional relevance.
Collapse
Affiliation(s)
- Nicholas J. Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY3 3FL, UK
| | - Mazdak Salavati
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Barbara B. Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
4
|
Hassan SS, Choudhury PP, Uversky VN, Dayhoff GW, Aljabali AAA, Uhal BD, Lundstrom K, Rezaei N, Seyran M, Pizzol D, Adadi P, Lal A, Soares A, Abd El-aziz TM, Kandimalla R, Tambuwala M, Azad GK, Sherchan SP, Baetas-da-cruz W, Takayama K, Serrano-aroca Á, Chauhan G, Palu G, Brufsky AM. Variability of Accessory Proteins Rules the SARS-CoV-2 Pathogenicity.. [DOI: 10.1101/2020.11.06.372227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractThe coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) which is pandemic with an estimated fatality rate less than 1% is ongoing. SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 with putative functions to manipulate host immune mechanisms such as interferons, immune signaling receptor NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasome, inflammatory cytokines such as interleukin 1β(IL-1β) are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins of all complete proteomes (available as of October 26, 2020, in the National Center for Biotechnology Information depository) of SARS-CoV-2, were observed across six continents. Across all continents, the decreasing order of percentage of unique variations in the accessory proteins was found to be ORF3a>ORF8>ORF7a>ORF6>ORF10>ORF7b. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. This finding suggests that the wide variations of accessory proteins seem to govern the pathogenicity of SARS-CoV-2, and consequently, certain propositions and recommendations can be made in the public interest.
Collapse
|