1
|
Guo Y, Meng J, Liu C, Chen G, Chi Y, Zheng S, Wang H. How to Deal With Vaccine Breakthrough Infection With SARS-CoV-2 Variants. Front Public Health 2022; 10:842303. [PMID: 35372196 PMCID: PMC8965021 DOI: 10.3389/fpubh.2022.842303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/17/2023] Open
Abstract
Novel Coronary Pneumonia is the most infectious disease with the highest number of morbidity and mortality in 100 years. Despite aggressive and effective COVID-19 prevention and control measures, countries have been unable to stop its outbreaks. With the widespread use of vaccines, the occurrence of COVID-19 has declined markedly. April 21, 2021, New York scholars reported Vaccine Breakthrough Infections with SARS-CoV-2 Variants, which immediately attracted widespread attention. In this mini-review, we focus on the characteristics of SARS-CoV-2 and its mutant strains and vaccine breakthrough infections. We have found that outbreaks of vaccine-breaking SARS-CoV-2 Delta infections in many countries are primarily the result of declining vaccine-generated antibody titers and relaxed outbreak management measures. For this reason, we believe that the main response to vaccine-breaking infections with the SARS-CoV-2 variant is to implement a rigorous outbreak defense policy and vaccine application. Only by intensifying the current vaccination intensity, gradually improving the vaccine and its application methods, and strengthening non-pharmaceutical measures such as travel restrictions, social distancing, masking and hand hygiene, can the COVID-19 outbreak be fully controlled at an early date.
Collapse
Affiliation(s)
- Ying Guo
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jun Meng
- Department of Respiratory Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Caide Liu
- Department of General Practice, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guosheng Chen
- General Practice Teaching and Research Section, Weifang Medical University, Weifang, China
| | - Yuhua Chi
- Department of General Practice, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shiliang Zheng
- Department of General Practice, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haixia Wang
- Department of Blood Transfusion, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Evaluating Humoral Immunity against SARS-CoV-2: Validation of a Plaque-Reduction Neutralization Test and a Multilaboratory Comparison of Conventional and Surrogate Neutralization Assays. Microbiol Spectr 2021; 9:e0088621. [PMID: 34787495 PMCID: PMC8597631 DOI: 10.1128/spectrum.00886-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evaluation of humoral protective immunity against SARS-CoV-2 remains crucial in understanding both natural immunity and protective immunity conferred by the several vaccines implemented in the fight against COVID-19. The reference standard for the quantification of antibodies capable of neutralizing SARS-CoV-2 is the plaque-reduction neutralization test (PRNT). However, given that it is a laboratory-developed assay, validation is crucial in order to ensure sufficient specificity and intra- and interassay precision. In addition, a multitude of other serological assays have been developed, including enzyme-linked immunosorbent assay (ELISA), flow cytometry-based assays, luciferase-based lentiviral pseudotype assays, and commercially available human ACE2 receptor-blocking antibody tests, which offer practical advantages in the evaluation of the protective humoral response against SARS-CoV-2. In this study, we validated a SARS-CoV-2 PRNT to assess both 50% and 90% neutralization of SARS-CoV-2 according to guidelines outlined by the World Health Organization. Upon validation, the reference-standard PRNT demonstrated excellent specificity and both intra- and interassay precision. Using the validated assay as a reference standard, we characterized the neutralizing antibody response in specimens from patients with laboratory-confirmed COVID-19. Finally, we conducted a small-scale multilaboratory comparison of alternate SARS-CoV-2 PRNTs and surrogate neutralization tests. These assays demonstrated substantial to perfect interrater agreement with the reference-standard PRNT and offer useful alternatives to assess humoral immunity against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the causal agent of COVID-19, has infected over 246 million people and led to over 5 million deaths as of October 2021. With the approval of several efficacious COVID-19 vaccines, methods to evaluate protective immune responses will be crucial for the understanding of long-term immunity in the rapidly growing vaccinated population. The PRNT, which quantifies SARS-CoV-2-neutralizing antibodies, is used widely as a reference standard to validate new platforms but has not undergone substantial validation to ensure excellent inter- and intraassay precision and specificity. Our work is significant, as it describes the thorough validation of a PRNT, which we then used as a reference standard for the comparison of several alternative serological methods to measure SARS-CoV-2-neutralizing antibodies. These assays demonstrated excellent agreement with the reference-standard PRNT and include high-throughput platforms, which can greatly enhance capacity to assess both natural and vaccine-induced protective immunity against SARS-CoV-2.
Collapse
|
3
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Moreira RA, Guzman HV, Boopathi S, Baker JL, Poma AB. Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5362. [PMID: 33255977 PMCID: PMC7730245 DOI: 10.3390/ma13235362] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/27/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has disrupted modern societies and their economies. The resurgence in COVID-19 cases as part of the second wave is observed across Europe and the Americas. The scientific response has enabled a complete structural characterization of the Severe Acute Respiratory Syndrome-novel Coronavirus 2 (SARS-CoV-2). Among the most relevant proteins required by the novel coronavirus to facilitate the cell entry mechanism is the spike protein. This protein possesses a receptor-binding domain (RBD) that binds the cellular angiotensin-converting enzyme 2 (ACE2) and then triggers the fusion of viral and host cell membranes. In this regard, a comprehensive characterization of the structural stability of the spike protein is a crucial step to find new therapeutics to interrupt the process of recognition. On the other hand, it has been suggested that the participation of more than one RBD is a possible mechanism to enhance cell entry. Here, we discuss the protein structural stability based on the computational determination of the dynamic contact map and the energetic difference of the spike protein conformations via the mapping of the hydration free energy by the Poisson-Boltzmann method. We expect our result to foster the discussion of the number of RBD involved during recognition and the repurposing of new drugs to disable the recognition by discovering new hotspots for drug targets apart from the flexible loop in the RBD that binds the ACE2.
Collapse
Affiliation(s)
- Rodrigo A. Moreira
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland;
| | - Horacio V. Guzman
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Joseph L. Baker
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA;
| | - Adolfo B. Poma
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Wang J, Shuai L, Wang C, Liu R, He X, Zhang X, Sun Z, Shan D, Ge J, Wang X, Hua R, Zhong G, Wen Z, Bu Z. Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice. Protein Cell 2020; 11:776-782. [PMID: 32749592 PMCID: PMC7401472 DOI: 10.1007/s13238-020-00767-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
MESH Headings
- Adaptation, Physiological
- Adenosine Monophosphate/administration & dosage
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Adenosine Monophosphate/therapeutic use
- Administration, Intranasal
- Alanine/administration & dosage
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Alanine/therapeutic use
- Animals
- Betacoronavirus/genetics
- Betacoronavirus/physiology
- COVID-19
- Chlorocebus aethiops
- Coronavirus Infections/drug therapy
- Coronavirus Infections/virology
- Disease Models, Animal
- Female
- Host Specificity/genetics
- Lung/pathology
- Lung/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation, Missense
- Nasal Mucosa/virology
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/virology
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- SARS-CoV-2
- Turbinates/virology
- Vero Cells
- Viral Load
- Virus Replication
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Renqiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun He
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, 150069, China
| | - Xianfeng Zhang
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, 150069, China
| | - Ziruo Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dan Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ronghong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Gongxun Zhong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, 150069, China.
| |
Collapse
|
6
|
Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs 2020; 80:1267-1292. [PMID: 32696108 PMCID: PMC7372203 DOI: 10.1007/s40265-020-01367-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 associated coronavirus disease 2019 (COVID-19) illness is a syndrome of viral replication in concert with a host inflammatory response. The cytokine storm and viral evasion of cellular immune responses may play an equally important role in the pathogenesis, clinical manifestation, and outcomes of COVID-19. Systemic proinflammatory cytokines and biomarkers are elevated as the disease progresses towards its advanced stages, and correlate with worse chances of survival. Immune modulators have the potential to inhibit cytokines and treat the cytokine storm. A literature search using PubMed, Google Scholar, and ClinicalTrials.gov was conducted through 8 July 2020 using the search terms ‘coronavirus’, ‘immunology’, ‘cytokine storm’, ‘immunomodulators’, ‘pharmacology’, ‘severe acute respiratory syndrome 2’, ‘SARS-CoV-2’, and ‘COVID-19’. Specific immune modulators include anti-cytokines such as interleukin (IL)-1 and IL-6 receptor antagonists (e.g. anakinra, tocilizumab, sarilumab, siltuximab), Janus kinase (JAK) inhibitors (e.g. baricitinib, ruxolitinib), anti-tumor necrosis factor-α (e.g. adalimumab, infliximab), granulocyte–macrophage colony-stimulating factors (e.g. gimsilumab, lenzilumab, namilumab), and convalescent plasma, with promising to negative trials and other data. Non-specific immune modulators include human immunoglobulin, corticosteroids such as dexamethasone, interferons, statins, angiotensin pathway modulators, macrolides (e.g. azithromycin, clarithromycin), hydroxychloroquine and chloroquine, colchicine, and prostaglandin D2 modulators such as ramatroban. Dexamethasone 6 mg once daily (either by mouth or by intravenous injection) for 10 days may result in a reduction in mortality in COVID-19 patients by one-third for patients on ventilators, and by one-fifth for those receiving oxygen. Research efforts should focus not only on the most relevant immunomodulatory strategies but also on the optimal timing of such interventions to maximize therapeutic outcomes. In this review, we discuss the potential role and safety of these agents in the management of severe COVID-19, and their impact on survival and clinical symptoms.
Collapse
Affiliation(s)
- John G Rizk
- Edson College, Arizona State University, Phoenix, AZ, USA.
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, Los Angeles, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Tibor Rubin VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Youssef Rizk
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|