1
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase Separation Produces Interfacial Environment within Diblock Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.30.534967. [PMID: 37034777 PMCID: PMC10081284 DOI: 10.1101/2023.03.30.534967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
3
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
4
|
Gruijs da Silva LA, Simonetti F, Hutten S, Riemenschneider H, Sternburg EL, Pietrek LM, Gebel J, Dötsch V, Edbauer D, Hummer G, Stelzl LS, Dormann D. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation. EMBO J 2022; 41:e108443. [PMID: 35112738 PMCID: PMC9016352 DOI: 10.15252/embj.2021108443] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.
Collapse
Affiliation(s)
- Lara A Gruijs da Silva
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Francesca Simonetti
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Saskia Hutten
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany
| | | | - Erin L Sternburg
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany
| | - Lisa M Pietrek
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Jakob Gebel
- Institute for Biophysical Chemistry, Goethe-Universität, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute for Biophysical Chemistry, Goethe-Universität, Frankfurt am Main, Germany
| | - Dieter Edbauer
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute for Biophysics, Goethe-Universität, Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,KOMET1, Institute of Physics, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Dorothee Dormann
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
5
|
Sawade K, Peter C. Multiscale simulations of protein and membrane systems. Curr Opin Struct Biol 2021; 72:203-208. [PMID: 34953308 DOI: 10.1016/j.sbi.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Classical multiscale simulations are perfectly suited to investigate biological soft matter systems. Owing to the bridging between microscopically realistic and lower-resolution models or the integration of a hierarchy of subsystems, one gets access to biologically relevant system sizes and timescales. In recent years, increasingly complex systems and processes have come into focus such as multidomain proteins, phase separation processes in biopolymer solutions, multicomponent biomembranes, or multiprotein complexes up to entire viruses. The review shows factors that have contributed to this progress - from improved models to machine-learning-based analysis and scale-bridging methods.
Collapse
Affiliation(s)
- Kevin Sawade
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78 457, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78 457, Konstanz, Germany.
| |
Collapse
|
6
|
Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell KO, Espinosa JR, Garaizar A, Collepardo-Guevara R. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. NATURE COMPUTATIONAL SCIENCE 2021; 1:732-743. [PMID: 35795820 PMCID: PMC7612994 DOI: 10.1038/s43588-021-00155-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
Various physics- and data-driven sequence-dependent protein coarse-grained models have been developed to study biomolecular phase separation and elucidate the dominant physicochemical driving forces. Here, we present Mpipi, a multiscale coarse-grained model that describes almost quantitatively the change in protein critical temperatures as a function of amino-acid sequence. The model is parameterised from both atomistic simulations and bioinformatics data and accounts for the dominant role of π-π and hybrid cation-π/π-π interactions and the much stronger attractive contacts established by arginines than lysines. We provide a comprehensive set of benchmarks for Mpipi and seven other residue-level coarse-grained models against experimental radii of gyration and quantitative in-vitro phase diagrams; Mpipi predictions agree well with experiment on both fronts. Moreover, it can account for protein-RNA interactions, correctly predicts the multiphase behaviour of a charge-matched poly-arginine/poly-lysine/RNA system, and recapitulates experimental LLPS trends for sequence mutations on FUS, DDX4 and LAF-1 proteins.
Collapse
Affiliation(s)
- Jerelle A. Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anne Aguirre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kieran O. Russell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Jorge R. Espinosa
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Adiran Garaizar
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|