1
|
Islam MA, Ford Versypt AN. Mathematical Modeling of Impacts of Patient Differences on Renin-Angiotensin System and Applications to COVID-19 Lung Fibrosis Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.06.515367. [PMID: 36380760 PMCID: PMC9665336 DOI: 10.1101/2022.11.06.515367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19. However, conflicting evidence suggests decreases, increases, or no changes in RAS peptides after SARS-CoV-2 infection. In addition, detailed mechanisms connecting the patient-specific conditions before infection to infection-induced RAS alterations are still unknown. Here, a multiscale computational model was developed to quantify the systemic contribution of heterogeneous factors of RAS during COVID-19. Three submodels were connected-an agent-based model for in-host COVID-19 response in the lung tissue, a RAS dynamics model, and a fibrosis dynamics model to investigate the effects of patient-group-specific factors in the systemic alteration of RAS and collagen deposition in the lung. The model results indicated cell death due to inflammatory response as a major contributor to the reduction of ACE and ACE2. In contrast, there were no significant changes in ACE2 dynamics due to viral-bound internalization of ACE2. The model explained possible mechanisms for conflicting evidence of patient-group-specific changes in RAS peptides in previously published studies. Simulated results were consistent with reported RAS peptide values for SARS-CoV-2-negative and SARS-CoV-2-positive patients. RAS peptides decreased for all virtual patient groups with aging in both sexes. In contrast, large variations in the magnitude of reduction were observed between male and female virtual patients in the older and middle-aged groups. The patient-specific variations in homeostasis RAS peptide concentrations of SARS-CoV-2-negative patients also affected the dynamics of RAS during infection. The model results also showed that feedback between RAS signaling and renin dynamics could restore ANGI homeostasis concentration but failed to restore homeostasis values of RAS peptides downstream of ANGI. In addition, the results showed that ACE2 variations with age and sex significantly altered the concentrations of RAS peptides and led to collagen deposition with slight variations depending on age and sex. This model may find further applications in patient-specific calibrations of tissue models for acute and chronic lung diseases to develop personalized treatments.
Collapse
|
2
|
Korkmaz HI, Sheraton VM, Bumbuc RV, Li M, Pijpe A, Mulder PPG, Boekema BKHL, de Jong E, Papendorp SGF, Brands R, Middelkoop E, Sloot PMA, van Zuijlen PPM. An in silico modeling approach to understanding the dynamics of the post-burn immune response. Front Immunol 2024; 15:1303776. [PMID: 38348032 PMCID: PMC10859697 DOI: 10.3389/fimmu.2024.1303776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Burns are characterized by a massive and prolonged acute inflammation, which persists for up to months after the initial trauma. Due to the complexity of the inflammatory process, Predicting the dynamics of wound healing process can be challenging for burn injuries. The aim of this study was to develop simulation models for the post-burn immune response based on (pre)clinical data. Methods The simulation domain was separated into blood and tissue compartments. Each of these compartments contained solutes and cell agents. Solutes comprise pro-inflammatory cytokines, anti-inflammatory cytokines and inflammation triggering factors. The solutes diffuse around the domain based on their concentration profiles. The cells include mast cells, neutrophils, and macrophages, and were modeled as independent agents. The cells are motile and exhibit chemotaxis based on concentrations gradients of the solutes. In addition, the cells secrete various solutes that in turn alter the dynamics and responses of the burn wound system. Results We developed an Glazier-Graner-Hogeweg method-based model (GGH) to capture the complexities associated with the dynamics of inflammation after burn injuries, including changes in cell counts and cytokine levels. Through simulations from day 0 - 4 post-burn, we successfully identified key factors influencing the acute inflammatory response, i.e., the initial number of endothelial cells, the chemotaxis threshold, and the level of chemoattractants. Conclusion Our findings highlight the pivotal role of the initial endothelial cell count as a key parameter for intensity of inflammation and progression of acute inflammation, 0 - 4 days post-burn.
Collapse
Affiliation(s)
- H. Ibrahim Korkmaz
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Vivek M. Sheraton
- Computational Science Lab, Informatics Institute, University of Amsterdam, UvA - LAB42, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, ONCODE, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, Netherlands
| | - Roland V. Bumbuc
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity (AII) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Computational Science Lab, Informatics Institute, University of Amsterdam, UvA - LAB42, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, ONCODE, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, Netherlands
| | - Meifang Li
- Computational Science Lab, Informatics Institute, University of Amsterdam, UvA - LAB42, Amsterdam, Netherlands
| | - Anouk Pijpe
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
| | - Patrick P. G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bouke K. H. L. Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Evelien de Jong
- Department of Intensive Care, Red Cross Hospital, Beverwijk, Netherlands
| | | | - Ruud Brands
- Complexity Institute, Nanyang Technological University, Singapore, Singapore
- Alloksys Life Sciences BV, Wageningen, Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Peter M. A. Sloot
- Computational Science Lab, Informatics Institute, University of Amsterdam, UvA - LAB42, Amsterdam, Netherlands
| | - Paul P. M. van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, Netherlands
- Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Paediatric Surgical Centre, Emma Children’s Hospital, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, Netherlands
| |
Collapse
|
3
|
Kalev-Altman R, Becker G, Levy T, Penn S, Shpigel NY, Monsonego-Ornan E, Sela-Donenfeld D. Mmp2 Deficiency Leads to Defective Parturition and High Dystocia Rates in Mice. Int J Mol Sci 2023; 24:16822. [PMID: 38069145 PMCID: PMC10706207 DOI: 10.3390/ijms242316822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Parturition is the final and essential step for mammalian reproduction. While the uterus is quiescent during pregnancy, fundamental changes arise in the myometrial contractility, inducing fetal expulsion. Extracellular matrix (ECM) remodeling is fundamental for these events. The gelatinases subgroup of matrix metalloproteinases (MMPs), MMP2 and MMP9, participate in uterine ECM remodeling throughout pregnancy and parturition. However, their loss-of-function effect is unknown. Here, we determined the result of eliminating Mmp2 and/or Mmp9 on parturition in vivo, using single- and double-knockout (dKO) mice. The dystocia rates were measured in each genotype, and uterine tissue was collected from nulliparous synchronized females at the ages of 2, 4, 9 and 12 months. Very high percentages of dystocia (40-55%) were found in the Mmp2-/- and dKO females, contrary to the Mmp9-/- and wild-type females. The histological analysis of the uterus and cervix revealed that Mmp2-/- tissues undergo marked structural alterations, including highly enlarged myometrial, endometrial and luminal cavity. Increased collagen deposition was also demonstrated, suggesting a mechanism of extensive fibrosis in the Mmp2-/- myometrium, which may result in dystocia. Overall, this study describes a new role for MMP2 in myometrium remodeling during mammalian parturition process, highlighting a novel cause for dystocia due to a loss in MMP2 activity in the uterine tissue.
Collapse
Affiliation(s)
- Rotem Kalev-Altman
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Gal Becker
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Tamar Levy
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| | - Svetlana Penn
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Nahum Y. Shpigel
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (E.M.-O.)
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel (N.Y.S.)
| |
Collapse
|
4
|
Johnson JA, Stein-O’Brien GL, Booth M, Heiland R, Kurtoglu F, Bergman DR, Bucher E, Deshpande A, Forjaz A, Getz M, Godet I, Lyman M, Metzcar J, Mitchell J, Raddatz A, Rocha H, Solorzano J, Sundus A, Wang Y, Gilkes D, Kagohara LT, Kiemen AL, Thompson ED, Wirtz D, Wu PH, Zaidi N, Zheng L, Zimmerman JW, Jaffee EM, Hwan Chang Y, Coussens LM, Gray JW, Heiser LM, Fertig EJ, Macklin P. Digitize your Biology! Modeling multicellular systems through interpretable cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557982. [PMID: 37745323 PMCID: PMC10516032 DOI: 10.1101/2023.09.17.557982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.
Collapse
Affiliation(s)
- Jeanette A.I. Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Genevieve L. Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University. Baltimore, MD USA
| | - Max Booth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Furkan Kurtoglu
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elmar Bucher
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Ines Godet
- Memorial Sloan Kettering Cancer Center. New York, NY USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
- Department of Informatics, Indiana University. Bloomington, IN USA
| | - Jacob Mitchell
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Human Genetics, Johns Hopkins University. Baltimore, MD USA
| | - Andrew Raddatz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University. Atlanta, GA USA
| | - Heber Rocha
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Jacobo Solorzano
- Centre de Recherches en Cancerologie de Toulouse. Toulouse, France
| | - Aneequa Sundus
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Danielle Gilkes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Ashley L. Kiemen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
| | | | - Denis Wirtz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
- Department of Materials Science and Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Pei-Hsun Wu
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University. Portland, OR USA
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Laura M. Heiser
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| |
Collapse
|