1
|
Habra H, Meijer JL, Shen T, Fiehn O, Gaul DA, Fernández FM, Rempfert KR, Metz TO, Peterson KE, Evans CR, Karnovsky A. metabCombiner 2.0: Disparate Multi-Dataset Feature Alignment for LC-MS Metabolomics. Metabolites 2024; 14:125. [PMID: 38393017 PMCID: PMC10891690 DOI: 10.3390/metabo14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Liquid chromatography-high-resolution mass spectrometry (LC-HRMS), as applied to untargeted metabolomics, enables the simultaneous detection of thousands of small molecules, generating complex datasets. Alignment is a crucial step in data processing pipelines, whereby LC-MS features derived from common ions are assembled into a unified matrix amenable to further analysis. Variability in the analytical factors that influence liquid chromatography separations complicates data alignment. This is prominent when aligning data acquired in different laboratories, generated using non-identical instruments, or between batches from large-scale studies. Previously, we developed metabCombiner for aligning disparately acquired LC-MS metabolomics datasets. Here, we report significant upgrades to metabCombiner that enable the stepwise alignment of multiple untargeted LC-MS metabolomics datasets, facilitating inter-laboratory reproducibility studies. To accomplish this, a "primary" feature list is used as a template for matching compounds in "target" feature lists. We demonstrate this workflow by aligning four lipidomics datasets from core laboratories generated using each institution's in-house LC-MS instrumentation and methods. We also introduce batchCombine, an application of the metabCombiner framework for aligning experiments composed of multiple batches. metabCombiner is available as an R package on Github and Bioconductor, along with a new online version implemented as an R Shiny App.
Collapse
Affiliation(s)
- Hani Habra
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Jennifer L. Meijer
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Tong Shen
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (D.A.G.); (F.M.F.)
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (D.A.G.); (F.M.F.)
| | - Kaitlin R. Rempfert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (K.R.R.); (T.O.M.)
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (K.R.R.); (T.O.M.)
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA;
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
2
|
Fernández Requena B, Nadeem S, Reddy VP, Naidoo V, Glasgow JN, Steyn AJC, Barbas C, Gonzalez-Riano C. LiLA: lipid lung-based ATLAS built through a comprehensive workflow designed for an accurate lipid annotation. Commun Biol 2024; 7:45. [PMID: 38182666 PMCID: PMC10770321 DOI: 10.1038/s42003-023-05680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Accurate lipid annotation is crucial for understanding the role of lipids in health and disease and identifying therapeutic targets. However, annotating the wide variety of lipid species in biological samples remains challenging in untargeted lipidomic studies. In this work, we present a lipid annotation workflow based on LC-MS and MS/MS strategies, the combination of four bioinformatic tools, and a decision tree to support the accurate annotation and semi-quantification of the lipid species present in lung tissue from control mice. The proposed workflow allowed us to generate a lipid lung-based ATLAS (LiLA), which was then employed to unveil the lipidomic signatures of the Mycobacterium tuberculosis infection at two different time points for a deeper understanding of the disease progression. This workflow, combined with manual inspection strategies of MS/MS data, can enhance the annotation process for lipidomic studies and guide the generation of sample-specific lipidome maps. LiLA serves as a freely available data resource that can be employed in future studies to address lipidomic alterations in mice lung tissue.
Collapse
Affiliation(s)
- Belén Fernández Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Africa Health Research Institute, Durban, South Africa
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| |
Collapse
|