1
|
Venken K, Jarlborg M, Stevenaert F, Malfait TLA, Vlieghe C, Abraham Y, Manuello T, Decruy T, Vanhee S, Wils H, Peeters PJ, Carron P, Van den Bosch F, Van Tendeloo V, Lambrecht BN, Wittoek R, Jacques P, Elewaut D. Shared lung and joint T cell repertoire in early rheumatoid arthritis driven by cigarette smoking. Ann Rheum Dis 2024:ard-2024-226284. [PMID: 39521450 DOI: 10.1136/ard-2024-226284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Smoking has been associated with an increased risk of developing rheumatoid arthritis (RA) in individuals carrying shared epitope (SE) HLA-DRB1 alleles. Yet, little is known about the regional and systemic T cell dynamics of smoking and a potential link to T cell infiltration in inflamed synovia. In this study, we, therefore, sought to study T cell features in lung and inflamed joints in smoking versus non-smoking patients. METHODS We set up a framework to monitor T cells in paired bronchoalveolar lavage fluid, blood and inflamed synovium tissue samples from 17 new-onset treatment naïve anticitrullinated protein antibody+RA patients. T cell receptor (TCR) repertoire of index-sorted tissue residing in T cells was determined by single-cell TCR sequencing coupled with deep immunophenotyping. RESULTS A significant enrichment of CD4+ and CD8+ T cells was seen in synovial samples from smoking versus non-smoking patients, along with an increase in expanded T cell clonotypes. This was particularly pronounced among SE+smokers, suggestive of a synergic gene-smoke effect. Strikingly, identical TCR clonalities were present in matched lung and joint samples of RA smokers, the majority being also detectable in circulation. This was mirrored by an increased clustering of lung and synovium TCRs across patients, suggesting a shared specificity by conserved motifs. The lung-joint shared T cell clonotypes showed a restricted TCR gene usage and exhibited a particular 4-1BB+CD57 hi effector profile within the inflamed synovium. CONCLUSION The data indicate a profound interplay between a strong MHC predisposition, smoking and induction of autoimmunity by shaping the TCR repertoire.
Collapse
Affiliation(s)
- Koen Venken
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Matthias Jarlborg
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | | | - Thomas L A Malfait
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Department of Respiratory Medicine, University Hospital Ghent, Gent, Belgium
| | - Carolien Vlieghe
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Yann Abraham
- Janssen Research and Development, Beerse, Belgium
| | - Teddy Manuello
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Tine Decruy
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Stijn Vanhee
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
| | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Philippe Carron
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Filip Van den Bosch
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | | | - Bart N Lambrecht
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Department of Respiratory Medicine, University Hospital Ghent, Gent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Zwijnaarde, Belgium
| | - Ruth Wittoek
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Peggy Jacques
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| | - Dirk Elewaut
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Molecular Immunology and Inflammation Unit, VIB-UGent Center for Inflammation Research, Zwijnaarde, Belgium
| |
Collapse
|
5
|
Kang JB, Shen AZ, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta KA, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Luo Y, Sakaue S, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat Genet 2023; 55:2255-2268. [PMID: 38036787 PMCID: PMC10787945 DOI: 10.1038/s41588-023-01586-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z Shen
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R C Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Mark J Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|