1
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598865. [PMID: 38915497 PMCID: PMC11195223 DOI: 10.1101/2024.06.13.598865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.
Collapse
Affiliation(s)
- Juliana L Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Neahring L, He Y, Cho NH, Liu G, Fernandes J, Rux CJ, Nakos K, Subramanian R, Upadhyayula S, Yildiz A, Dumont S. Torques within and outside the human spindle balance twist at anaphase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570990. [PMID: 38405786 PMCID: PMC10888964 DOI: 10.1101/2023.12.10.570990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, using lattice light sheet microscopy, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are redundantly required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.
Collapse
Affiliation(s)
- Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Yifei He
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Nathan H. Cho
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Gaoxiang Liu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jonathan Fernandes
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Caleb J. Rux
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Konstantinos Nakos
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Physics Department, University of California Berkeley, Berkeley, CA, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|