1
|
Rabelink TJ, Wang G, van der Vlag J, van den Berg BM. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol 2024; 20:822-832. [PMID: 39191935 DOI: 10.1038/s41581-024-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
Collapse
Affiliation(s)
- Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Trachtman H, Desmond H, Williams AL, Mariani LH, Eddy S, Ju W, Barisoni L, Ascani HK, Uhlmann WR, Spino C, Holzman LB, Sedor JR, Gadegbeku C, Subramanian L, Lienczewski CC, Manieri T, Roberts SJ, Gipson DS, Kretzler M. Rationale and design of the Nephrotic Syndrome Study Network (NEPTUNE) Match in glomerular diseases: designing the right trial for the right patient, today. Kidney Int 2024; 105:218-230. [PMID: 38245210 PMCID: PMC11090626 DOI: 10.1016/j.kint.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled >850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant's molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hailey Desmond
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda L Williams
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Barisoni
- Department of Pathology and Medicine, Duke University, Durham, North Carolina, USA
| | - Heather K Ascani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wendy R Uhlmann
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Cathie Spino
- Statistical Analysis, Biomedical and Educational Research Unit, University of Michigan, Ann Arbor, Michigan, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Sedor
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Crystal Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chrysta C Lienczewski
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tina Manieri
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Roberts
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|