1
|
Purshouse K, Pollard SM, Bickmore WA. Imaging extrachromosomal DNA (ecDNA) in cancer. Histochem Cell Biol 2024; 162:53-64. [PMID: 38625562 PMCID: PMC7616135 DOI: 10.1007/s00418-024-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.
Collapse
Affiliation(s)
- Karin Purshouse
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Yan X, Mischel P, Chang H. Extrachromosomal DNA in cancer. Nat Rev Cancer 2024; 24:261-273. [PMID: 38409389 DOI: 10.1038/s41568-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches.
Collapse
Affiliation(s)
- Xiaowei Yan
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Pinglay S, Lalanne JB, Daza RM, Koeppel J, Li X, Lee DS, Shendure J. Multiplex generation and single cell analysis of structural variants in a mammalian genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576756. [PMID: 38405830 PMCID: PMC10888807 DOI: 10.1101/2024.01.22.576756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The functional consequences of structural variants (SVs) in mammalian genomes are challenging to study. This is due to several factors, including: 1) their numerical paucity relative to other forms of standing genetic variation such as single nucleotide variants (SNVs) and short insertions or deletions (indels); 2) the fact that a single SV can involve and potentially impact the function of more than one gene and/or cis regulatory element; and 3) the relative immaturity of methods to generate and map SVs, either randomly or in targeted fashion, in in vitro or in vivo model systems. Towards addressing these challenges, we developed Genome-Shuffle-seq, a straightforward method that enables the multiplex generation and mapping of several major forms of SVs (deletions, inversions, translocations) throughout a mammalian genome. Genome-Shuffle-seq is based on the integration of "shuffle cassettes" to the genome, wherein each shuffle cassette contains components that facilitate its site-specific recombination (SSR) with other integrated shuffle cassettes (via Cre-loxP), its mapping to a specific genomic location (via T7-mediated in vitro transcription or IVT), and its identification in single-cell RNA-seq (scRNA-seq) data (via T7-mediated in situ transcription or IST). In this proof-of-concept, we apply Genome-Shuffle-seq to induce and map thousands of genomic SVs in mouse embryonic stem cells (mESCs) in a single experiment. Induced SVs are rapidly depleted from the cellular population over time, possibly due to Cre-mediated toxicity and/or negative selection on the rearrangements themselves. Leveraging T7 IST of barcodes whose positions are already mapped, we further demonstrate that we can efficiently genotype which SVs are present in association with each of many single cell transcriptomes in scRNA-seq data. Finally, preliminary evidence suggests our method may be a powerful means of generating extrachromosomal circular DNAs (ecDNAs). Looking forward, we anticipate that Genome-Shuffle-seq may be broadly useful for the systematic exploration of the functional consequences of SVs on gene expression, the chromatin landscape, and 3D nuclear architecture. We further anticipate potential uses for in vitro modeling of ecDNAs, as well as in paving the path to a minimal mammalian genome.
Collapse
Affiliation(s)
- Sudarshan Pinglay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David S. Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Agustinus AS, David Y. Thinking outside the chromosome: epigenetic mechanisms in non-canonical chromatin species. Nat Struct Mol Biol 2024; 31:8-10. [PMID: 38253662 PMCID: PMC10964953 DOI: 10.1038/s41594-023-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Here we investigate the role of epigenetics in the formation, transcription regulation, maintenance and termination of several non-canonical chromatin structures. Using two examples, we demonstrate how studying non-canonical structures may reveal underlying mechanisms with implications for disease and propose intriguing epigenetic avenues for further exploration.
Collapse
Affiliation(s)
- Albert S Agustinus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yael David
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-institutional PhD Program in Chemical Biology, New York, NY, USA.
| |
Collapse
|