1
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
2
|
Shinde DP, Plante JA, Scharton D, Mitchell B, Walker J, Azar SR, Campos RK, Sacchetto L, Drumond BP, Vasilakis N, Plante KS, Weaver SC. Yellow Fever Emergence: Role of Heterologous Flavivirus Immunity in Preventing Urban Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583168. [PMID: 38463973 PMCID: PMC10925309 DOI: 10.1101/2024.03.03.583168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.
Collapse
|