1
|
McNamara HM, Solley SC, Adamson B, Chan MM, Toettcher JE. Recording morphogen signals reveals mechanisms underlying gastruloid symmetry breaking. Nat Cell Biol 2024; 26:1832-1844. [PMID: 39358450 DOI: 10.1038/s41556-024-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic 'signal-recording' gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior-posterior axis and structures resembling the mammalian primitive streak and tailbud. We find that cell sorting rearranges patchy domains of Wnt activity into a single pole that defines the gastruloid anterior-posterior axis. We also trace the emergence of Wnt domains to earlier heterogeneity in Nodal activity even before Wnt activity is detectable. Our study defines a mechanism through which aggregates of stem cells can form a patterning axis even in the absence of external spatial cues.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michelle M Chan
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Graham AJ, Khoo MW, Srivastava V, Viragova S, Kim H, Parekh K, Hennick KM, Bird M, Goldhammer N, Yu JZ, Morley CD, Lebel P, Kumar S, Rosenbluth JM, Nowakowski TJ, Klein O, Gómez-Sjöberg R, Gartner ZJ. MAGIC matrices: freeform bioprinting materials to support complex and reproducible organoid morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578324. [PMID: 38370663 PMCID: PMC10871257 DOI: 10.1101/2024.02.01.578324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Organoids are powerful models of tissue physiology, yet their applications remain limited due to their relatively simple morphology and high organoid-to-organoid structural variability. To address these limitations we developed a soft, composite yield-stress extracellular matrix that supports optimal organoid morphogenesis following freeform 3D bioprinting of cell slurries at tissue-like densities. The material is designed with two temperature regimes: at 4 °C it exhibits reversible yield-stress behavior to support long printing times without compromising cell viability. When transferred to cell culture at 37 °C, the material cross-links and exhibits similar viscoelasticity and plasticity to basement membrane extracts such as Matrigel. We first characterize the rheological properties of MAGIC matrices that optimize organoid morphogenesis, including low stiffness and high stress relaxation. Next, we combine this material with a custom piezoelectric printhead that allows more reproducible and robust self-organization from uniform and spatially organized tissue "seeds." We apply MAGIC matrix bioprinting for high-throughput generation of intestinal, mammary, vascular, salivary gland, and brain organoid arrays that are structurally similar to those grown in pure Matrigel, but exhibit dramatically improved homogeneity in organoid size, shape, maturation time, and efficiency of morphogenesis. The flexibility of this method and material enabled fabrication of fully 3D microphysiological systems, including perfusable organoid tubes that experience cyclic 3D strain in response to pressurization. Furthermore, the reproducibility of organoid structure increased the statistical power of a drug response assay by up to 8 orders-of-magnitude for a given number of comparisons. Combined, these advances lay the foundation for the efficient fabrication of complex tissue morphologies by canalizing their self-organization in both space and time.
Collapse
Affiliation(s)
- Austin J. Graham
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | | | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Sara Viragova
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA
| | - Honesty Kim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | - Kavita Parekh
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
| | - Kelsey M. Hennick
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Malia Bird
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Nadine Goldhammer
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Jie Zeng Yu
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Cameron D. Morley
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
| | - Paul Lebel
- Chan Zuckerberg Biohub SF, San Francisco, CA
| | - Sanjay Kumar
- Department of Bioengineering, University of California Berkeley, Berkeley, CA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Jennifer M. Rosenbluth
- Chan Zuckerberg Biohub SF, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ophir Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA
| | | | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub SF, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Center for Cellular Construction, University of California San Francisco, San Francisco, CA
| |
Collapse
|
3
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|