1
|
Martinez P, Patel H, You Y, Doud EH, Mosley AL, Lasagna-Reeves CA. Protocol for the isolation and proteomic analysis of pathological tau-seeds. STAR Protoc 2024; 5:103185. [PMID: 39078738 PMCID: PMC11333924 DOI: 10.1016/j.xpro.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
The aggregation and spreading of "tau-seeds" are key for the development and progression of tauopathies, including Alzheimer's disease. Here we describe the steps to isolate and analyze biochemically active tau-seeds from human, mouse, and cell origin. We detail the procedure to isolate soluble tau-seeds by size exclusion chromatography and seeding assay. The isolated tau-seed can be further analyzed to determine the interactome by mass spectrometry. This workflow identifies protein-protein interactors of tau-seeds, providing a useful tool for finding new therapeutic targets. For complete details on the use and execution of this protocol, please refer to Martinez et al.1.
Collapse
Affiliation(s)
- Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henika Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Pumo A, Legeay S. The dichotomous activities of microglia: A potential driver for phenotypic heterogeneity in Alzheimer's disease. Brain Res 2024; 1832:148817. [PMID: 38395249 DOI: 10.1016/j.brainres.2024.148817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, characterized by two defining neuropathological hallmarks: amyloid plaques composed of Aβ aggregates and neurofibrillary pathology. Recent research suggests that microglia have both beneficial and detrimental effects in the development of AD. A new theory proposes that microglia play a beneficial role in the early stages of the disease but become harmful in later stages. Further investigations are needed to gain a comprehensive understanding of this shift in microglia's function. This transition is likely influenced by specific conditions, including spatial, temporal, and transcriptional factors, which ultimately lead to the deterioration of microglial functionality. Additionally, recent studies have also highlighted the potential influence of microglia diversity on the various manifestations of AD. By deciphering the multiple states of microglia and the phenotypic heterogeneity in AD, significant progress can be made towards personalized medicine and better treatment outcomes for individuals affected by AD.
Collapse
Affiliation(s)
- Anna Pumo
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France.
| | - Samuel Legeay
- Université d'Angers, Faculté de Santé, Département Pharmacie, 16, Boulevard Daviers, Angers 49045, France; Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers F-49000, France
| |
Collapse
|