1
|
Aditham AK, Radford CE, Carr CR, Jasti N, King NP, Bloom JD. Deep mutational scanning of rabies glycoprotein defines mutational constraint and antibody-escape mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628970. [PMID: 39763725 PMCID: PMC11702696 DOI: 10.1101/2024.12.17.628970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rabies virus causes nearly 60,000 human deaths annually. Antibodies that target the rabies glycoprotein (G) are being developed as post-exposure prophylactics, but mutations in G can render such antibodies ineffective. Here, we use pseudovirus deep mutational scanning to measure how all single amino-acid mutations to G affect cell entry and neutralization by a panel of antibodies. These measurements identify sites critical for rabies G's function, and define constrained regions that are attractive epitopes for clinical antibodies, including at the apex and base of the protein. We provide complete maps of escape mutations for eight monoclonal antibodies, including some in clinical use or development. Escape mutations for most antibodies are present in some natural rabies strains. Overall, this work provides comprehensive information on the functional and antigenic effects of G mutations that can help inform development of stabilized vaccine antigens and antibodies that are resilient to rabies genetic variation.
Collapse
Affiliation(s)
- Arjun K. Aditham
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Caleb R. Carr
- Department of Genome Sciences, University of Washington, Seattle 98195
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Naveen Jasti
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle 98195
- Institute for Protein Design, University of Washington, Seattle 98195
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle 98195
- Institute for Protein Design, University of Washington, Seattle 98195
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Howard Hughes Medical Institute, Seattle, WA 98109
| |
Collapse
|
2
|
Al-Wassiti HA, Fabb SA, Grimley SL, Kochappan R, Ho JK, Wong CY, Tan CW, Payne TJ, Takanashi A, Lee CL, Mugan RS, Sicilia H, Teo SL, McAuley J, Ellenberg P, Cooney JP, Davidson KC, Bowen R, Pellegrini M, Rockman S, Godfrey DI, Nolan TM, Wang LF, Deliyannis G, Purcell DF, Pouton CW. mRNA vaccines encoding membrane-anchored RBDs of SARS-CoV-2 mutants induce strong humoral responses and can overcome immune imprinting. Mol Ther Methods Clin Dev 2024; 32:101380. [PMID: 39687732 PMCID: PMC11646785 DOI: 10.1016/j.omtm.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
We investigated mRNA vaccines encoding a membrane-anchored receptor-binding domain (RBD), each a fusion of a variant RBD, the transmembrane (TM) and cytoplasmic tail fragments of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In naive mice, RBD-TM mRNA vaccines against SARS-CoV-2 variants induced strong humoral responses against the target RBD. Multiplex surrogate viral neutralization (sVNT) assays revealed broad neutralizing activity against a range of variant RBDs. In the setting of a heterologous boost, against the background of exposure to ancestral whole-spike vaccines, sVNT studies suggested that BA.1 and BA.5 RBD-TM vaccines had the potential to overcome the detrimental effects of immune imprinting. A subsequent heterologous boost study using XBB.1.5 booster vaccines was evaluated using both sVNT and authentic virus neutralization. Geometric mean XBB.1.5 neutralization values after third-dose RBD-TM or whole-spike XBB.1.5 booster vaccines were compared with those after a third dose of ancestral spike booster vaccine. Fold-improvement over ancestral vaccine was just 1.3 for the whole-spike XBB.1.5 vaccine, similar to data published using human serum samples. In contrast, the fold-improvement achieved by the RBD-TM XBB.1.5 vaccine was 16.3, indicating that the RBD-TM vaccine induced the production of antibodies that neutralize the XBB.1.5 variant despite previous exposure to ancestral spike protein.
Collapse
Affiliation(s)
- Hareth A. Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Stewart A. Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samantha L. Grimley
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ruby Kochappan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joan K. Ho
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chinn Yi Wong
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chee Wah Tan
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas J. Payne
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chee Leng Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rekha Shandre Mugan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Horatio Sicilia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Serena L.Y. Teo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Julie McAuley
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Paula Ellenberg
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - James P. Cooney
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Richard Bowen
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Marc Pellegrini
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Steven Rockman
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
- Seqirus, Parkville, VIC 3052, Australia
| | - Dale I. Godfrey
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Terry M. Nolan
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lin-fa Wang
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Georgia Deliyannis
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Damian F.J. Purcell
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Boyle GE, Sitko KA, Galloway JG, Haddox HK, Bianchi AH, Dixon A, Wheelock MK, Vandi AJ, Wang ZR, Thomson RES, Garge RK, Rettie AE, Rubin AF, Geck RC, Gillam EMJ, DeWitt WS, Matsen FA, Fowler DM. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 2024; 228:iyae156. [PMID: 39319420 PMCID: PMC11538415 DOI: 10.1093/genetics/iyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.
Collapse
Affiliation(s)
- Gabriel E Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aisha Haley Bianchi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ajeya Dixon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melinda K Wheelock
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allyssa J Vandi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ziyu R Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - William S DeWitt
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Frederick A Matsen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Dadonaite B, Brown J, McMahon TE, Farrell AG, Figgins MD, Asarnow D, Stewart C, Lee J, Logue J, Bedford T, Murrell B, Chu HY, Veesler D, Bloom JD. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 2024; 631:617-626. [PMID: 38961298 PMCID: PMC11254757 DOI: 10.1038/s41586-024-07636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
SARS-CoV-2 variants acquire mutations in the spike protein that promote immune evasion1 and affect other properties that contribute to viral fitness, such as ACE2 receptor binding and cell entry2,3. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning4 to measure how more than 9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully affected ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456 and 473; however, the antigenic effects of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however, many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Teagan E McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marlin D Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Y Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
5
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antigenic variability of Lassa virus glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579020. [PMID: 38370709 PMCID: PMC10871245 DOI: 10.1101/2024.02.05.579020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R. Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G. Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A. Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead contact
| |
Collapse
|
6
|
Dadonaite B, Brown J, McMahon TE, Farrell AG, Asarnow D, Stewart C, Logue J, Murrell B, Chu HY, Veesler D, Bloom JD. Full-spike deep mutational scanning helps predict the evolutionary success of SARS-CoV-2 clades. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566961. [PMID: 38014024 PMCID: PMC10680755 DOI: 10.1101/2023.11.13.566961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how >9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry, or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456, and 473-however, the antigenic impacts of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Teagan E McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Y. Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| |
Collapse
|