1
|
Zhang Y, Weh KM, Tripp BA, Clarke JL, Howard CL, Sunilkumar S, Howell AB, Kresty LA. Cranberry Proanthocyanidins Mitigate Reflux-Induced Transporter Dysregulation in an Esophageal Adenocarcinoma Model. Pharmaceuticals (Basel) 2023; 16:1697. [PMID: 38139823 PMCID: PMC10747310 DOI: 10.3390/ph16121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Yun Zhang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Katherine M. Weh
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Bridget A. Tripp
- Bioinformatics Core Research Facility, Center for Biotechnology, University of Nebraska—Lincoln, N300 Beadle Center, Lincoln, NE 68588, USA;
| | - Jennifer L. Clarke
- Department of Statistics and Department of Food Science Technology, Quantitative Life Sciences Initiative, University of Nebraska—Lincoln, 253 Food Innovation Center, Lincoln, NE 68583, USA;
| | - Connor L. Howard
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Shruthi Sunilkumar
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019, USA;
| | - Laura A. Kresty
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (Y.Z.); (K.M.W.); (C.L.H.); (S.S.)
| |
Collapse
|