1
|
Vogt CC, Zipple MN, Sprockett DD, Miller CH, Hardy SX, Arthur MK, Greenstein AM, Colvin MS, Michel LM, Moeller AH, Sheehan MJ. Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures. BMC Biol 2024; 22:35. [PMID: 38355587 PMCID: PMC10865716 DOI: 10.1186/s12915-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Social behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. RESULTS Using a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. CONCLUSIONS C57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.
Collapse
Affiliation(s)
- Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caitlin H Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Summer X Hardy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew K Arthur
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Adam M Greenstein
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Melanie S Colvin
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Lucie M Michel
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice ( Mus musculus domesticus) from the Americas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564674. [PMID: 37961195 PMCID: PMC10634997 DOI: 10.1101/2023.10.30.564674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| |
Collapse
|