1
|
Wimalasekara RL, White D, Kumar A. Targeting Acinetobacter baumannii resistance-nodulation-division efflux pump transcriptional regulators to combat antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:4. [PMID: 39863717 PMCID: PMC11762787 DOI: 10.1038/s44259-024-00074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Regulatory elements controlling gene expression fine-tune bacterial responses to environmental cues, including antimicrobials, to optimize survival. Acinetobacter baumannii, a pathogen notorious for antimicrobial resistance, relies on efficient efflux systems. Though the role of efflux systems in antibiotic expulsion are well recognized, the regulatory mechanisms controlling their expression remain understudied. This review explores the current understanding of these regulators, aiming to inspire strategies to combat bacterial resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
| | - Dawn White
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Tse MW, Zhu M, Peters B, Hamami E, Chen J, Davis KP, Nitz S, Weller J, Warrier T, Hunt DK, Morales Y, Kawate T, Gaulin JL, Come JH, Hernandez-Bird J, Huo W, Neisewander I, Kiessling LL, Hung DT, Mecsas J, Aldridge BB, Isberg RR, Blainey PC. Massively parallel combination screen reveals small molecule sensitization of antibiotic-resistant Gram-negative ESKAPE pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586803. [PMID: 38585790 PMCID: PMC10996685 DOI: 10.1101/2024.03.26.586803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces. Here, we deployed a high-throughput combinatorial screening platform, DropArray, to evaluate the interactions of over 30,000 compounds with up to 22 antibiotics and 6 strains of Gram-negative ESKAPE pathogens, totaling to over 1.3 million unique strain-antibiotic-compound combinations. In this dataset, compounds more frequently exhibited synergy with known antibiotics than single-agent activity. We identified a compound, P2-56, and developed a more potent analog, P2-56-3, which potentiated rifampin (RIF) activity against Acinetobacter baumannii and Klebsiella pneumoniae. Using phenotypic assays, we showed P2-56-3 disrupts the outer membrane of A. baumannii. To identify pathways involved in the mechanism of synergy between P2-56-3 and RIF, we performed genetic screens in A. baumannii. CRISPRi-induced partial depletion of lipooligosaccharide transport genes (lptA-D, lptFG) resulted in hypersensitivity to P2-56-3/RIF treatment, demonstrating the genetic dependency of P2-56-3 activity and RIF sensitization on lpt genes in A. baumannii. Consistent with outer membrane homeostasis being an important determinant of P2-56-3/RIF tolerance, knockout of maintenance of lipid asymmetry complex genes and overexpression of certain resistance-nodulation-division efflux pumps - a phenotype associated with multidrug-resistance - resulted in hypersensitivity to P2-56-3. These findings demonstrate the immense scale of phenotypic antibiotic combination screens using DropArray and the potential for such approaches to discover new small molecule synergies against multidrug-resistant ESKAPE strains.
Collapse
Affiliation(s)
- Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- These authors contributed equally
| | - Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- These authors contributed equally
| | - Benjamin Peters
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- These authors contributed equally
| | - Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
- These authors contributed equally
| | - Julie Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Samuel Nitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Tri-Institutional Program in Computational Biology and Medicine, New York, New York, 10065
| | - Juliane Weller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Wellcome Sanger Institute, Hinxton, Saffron Walden CB10 1RQ, United Kingdom
| | - Thulasi Warrier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114
| | - Diana K. Hunt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Tomohiko Kawate
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114
| | | | - Jon H. Come
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Tango Therapeutics, Boston, MA, USA 02215
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Isabelle Neisewander
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, 02111
- These authors are co-corresponding and contributed equally
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- These authors are co-corresponding and contributed equally
| |
Collapse
|