1
|
Yang J, Li FZ, Arnold FH. Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering. ACS CENTRAL SCIENCE 2024; 10:226-241. [PMID: 38435522 PMCID: PMC10906252 DOI: 10.1021/acscentsci.3c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
Enzymes can be engineered at the level of their amino acid sequences to optimize key properties such as expression, stability, substrate range, and catalytic efficiency-or even to unlock new catalytic activities not found in nature. Because the search space of possible proteins is vast, enzyme engineering usually involves discovering an enzyme starting point that has some level of the desired activity followed by directed evolution to improve its "fitness" for a desired application. Recently, machine learning (ML) has emerged as a powerful tool to complement this empirical process. ML models can contribute to (1) starting point discovery by functional annotation of known protein sequences or generating novel protein sequences with desired functions and (2) navigating protein fitness landscapes for fitness optimization by learning mappings between protein sequences and their associated fitness values. In this Outlook, we explain how ML complements enzyme engineering and discuss its future potential to unlock improved engineering outcomes.
Collapse
Affiliation(s)
- Jason Yang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Francesca-Zhoufan Li
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Versini R, Sritharan S, Aykac Fas B, Tubiana T, Aimeur SZ, Henri J, Erard M, Nüsse O, Andreani J, Baaden M, Fuchs P, Galochkina T, Chatzigoulas A, Cournia Z, Santuz H, Sacquin-Mora S, Taly A. A Perspective on the Prospective Use of AI in Protein Structure Prediction. J Chem Inf Model 2024; 64:26-41. [PMID: 38124369 DOI: 10.1021/acs.jcim.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Raphaelle Versini
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sana Zineb Aimeur
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie, Computationnelle et Quantitative UMR 7238, Institut de Biologie Paris-Seine, 4 Place Jussieu, F-75005 Paris, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Patrick Fuchs
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
3
|
Subramanian AM, Thomson M. Unexplored regions of the protein sequence-structure map revealed at scale by a library of foldtuned language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573145. [PMID: 38187750 PMCID: PMC10769378 DOI: 10.1101/2023.12.22.573145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nature has likely sampled only a fraction of all protein sequences and structures allowed by the laws of biophysics. However, the combinatorial scale of amino-acid sequence-space has traditionally precluded substantive study of the full protein sequence-structure map. In particular, it remains unknown how much of the vast uncharted landscape of far-from-natural sequences consists of alternate ways to encode the familiar ensemble of natural folds; proteins in this category also represent an opportunity to diversify candidates for downstream applications. Here, we characterize sequence-structure mapping in far-from-natural regions of sequence-space guided by the capacity of protein language models (pLMs) to explore sequences outside their natural training data through generation. We demonstrate that pretrained generative pLMs sample a limited structural snapshot of the natural protein universe, including >350 common (sub)domain elements. Incorporating pLM, structure prediction, and structure-based search techniques, we surpass this limitation by developing a novel "foldtuning" strategy that pushes a pretrained pLM into a generative regime that maintains structural similarity to a target protein fold (e.g. TIM barrel, thioredoxin, etc) while maximizing dissimilarity to natural amino-acid sequences. We apply "foldtuning" to build a library of pLMs for >700 naturally-abundant folds in the SCOP database, accessing swaths of proteins that take familiar structures yet lie far from known sequences, spanning targets that include enzymes, immune ligands, and signaling proteins. By revealing protein sequence-structure information at scale outside of the context of evolution, we anticipate that this work will enable future systematic searches for wholly novel folds and facilitate more immediate protein design goals in catalysis and medicine.
Collapse
Affiliation(s)
- Arjuna M Subramanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|