1
|
Wu S, Nadelmann ER, Koschitzky M, Balagula Y, Halverstam C, Klar T. An eczematous eruption with features of prurigo nodularis: An unexpected presentation of alpha-gal syndrome. JAAD Case Rep 2025; 59:19-21. [PMID: 40225095 PMCID: PMC11992396 DOI: 10.1016/j.jdcr.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Affiliation(s)
- Shaun Wu
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Emily R. Nadelmann
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Merav Koschitzky
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yevgeniy Balagula
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Caroline Halverstam
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tobi Klar
- Department of Dermatology, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
Vaz-Rodrigues R, Mazuecos L, Contreras M, González-García A, Rafael M, Villar M, de la Fuente J. Tick salivary proteins metalloprotease and allergen-like p23 are associated with response to glycan α-Gal and mycobacterium infection. Sci Rep 2025; 15:8849. [PMID: 40087469 PMCID: PMC11909269 DOI: 10.1038/s41598-025-93031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The alpha-Gal syndrome (AGS) evolved as a catastrophic selection associated with anti-α-Gal IgM/IgG protective response against pathogen infection and tick-borne food allergy caused by IgE-type antibodies against this glycan present in glycoproteins and glycolipids from mammalian meat and derived products. The immune response to α-Gal is modulated by tick salivary proteins with and without α-Gal modifications in combination with tick saliva non-protein fraction. Herein, we characterized the role of tick salivary proteins, metalloprotease and allergen-like p23 in AGS and protection against tuberculosis in the AGS zebrafish animal model. Metalloprotease and p23 are involved in allergic reactions after mammalian meat consumption through upregulation of pro-inflammatory protein-coding genes prkdc, tlr2, tnfα and il1b. Challenge with Mycobacterium marinum activated Th1-mediated immune protective response with reduced pathogen infection, ameliorating Th2-associated allergic reactions associated with AGS. These results highlight molecular mechanisms modulated by tick proteins in response to α-Gal and provide insights to reduce AGS impact on human health.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain
| | - Lorena Mazuecos
- Biochemistry Section, Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Ave. Camilo José Cela 10, Ciudad Real, 13071, Spain
| | - Marinela Contreras
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain
| | - Almudena González-García
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain
| | - Marta Rafael
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain
| | - Margarita Villar
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain
- Biochemistry Section, Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Ave. Camilo José Cela 10, Ciudad Real, 13071, Spain
| | - José de la Fuente
- Institute for Game and Wildlife Research, SaBio, IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
- José de la Fuente, SaBioInstituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Ciudad Real, Spain.
| |
Collapse
|
3
|
Howell JL, Neaves B, Coop C. Alpha-Gal Syndrome in a Military Member. Cureus 2024; 16:e72004. [PMID: 39569298 PMCID: PMC11577486 DOI: 10.7759/cureus.72004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
Alpha-gal syndrome is an acquired disease ranging from gastrointestinal discomfort to anaphylaxis, an acute, life-threatening allergic reaction. Susceptible individuals have high-risk vocations or hobbies that involve outdoor activities where tick populations are overabundant. Potential exposure increases if located in the southeastern United States where Amblyomma americanum, or the lone star tick, carryingα-gal glycoprotein is prevalent. We present a case of exposure to such a tick population and the subsequent diagnosis of alpha-gal syndrome. Our case brings to question both the complex management of this disease and treatment within the military sector.
Collapse
Affiliation(s)
- Jackson L Howell
- Allergy and Immunology, 81st Medical Group Keesler Air Force Base, Biloxi, USA
| | | | | |
Collapse
|
4
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
5
|
Wang Y, Hils M, Fischer A, Wölbing F, Biedermann T, Schnieke A, Fischer K. Gene-edited pigs: a translational model for human food allergy against alpha-Gal and anaphylaxis. Front Immunol 2024; 15:1358178. [PMID: 38469303 PMCID: PMC10925645 DOI: 10.3389/fimmu.2024.1358178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
The prevalence of food allergy is rising and is estimated to approach 10%. Red meat allergy is the first known food allergy elicited by immunoglobulin E (IgE) antibodies recognizing a carbohydrate. Due to the loss of function of the alpha-1,3-galactosyltransferase (GGTA1) gene in humans, the disaccharide galactose-α-1,3-galactose (α-Gal) cannot be synthesized and therefore became immunogenic. IgE sensitization is elicited through the skin by repetitive tick bites transmitting α-Gal. The underlying mechanisms regarding innate and adaptive immune cell activation, including the B-cell isotype switch to IgE, are poorly understood, requiring further research and physiologically relevant animal models. Here, we describe a new animal model of red meat allergy using percutaneous α-Gal sensitization of gene-edited GGTA1-deficient pigs. Total and α-Gal-specific IgG, IgG1, IgG2, IgG4, and IgE levels were tracked. Further key factors associated with allergic skin inflammation, type 2 immunity, and allergy development were measured in PBMCs and skin samples. Significant increases in α-Gal-specific IgG1 and IgE levels indicated successful sensitization to the allergen α-Gal. Intracutaneous sensitizations with α-Gal recruited lymphocytes to the skin, including elevated numbers of T helper 2 (Th2) cells. Finally, α-Gal-sensitized pigs not only recognized α-Gal as non-self-antigen following α-Gal exposure through the skin but also developed anaphylaxis upon antigen challenge. Based on the similarities between the porcine and human skin, this new large animal model for α-Gal allergy should help to unveil the consecutive steps of cutaneous sensitization and aid the development of prophylactic and treatment interventions.
Collapse
Affiliation(s)
- Ying Wang
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrea Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|