1
|
Kumar A, Kishimoto K, Goel HL, Wisniewski CA, Li R, Pacheco B, Zhu LJ, Flavahan WA, Mercurio AM. Resistance to Radiation Enhances Metastasis by Altering RNA Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638943. [PMID: 40060410 PMCID: PMC11888214 DOI: 10.1101/2025.02.19.638943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cellular programs that mediate therapy resistance are often important drivers of metastasis, a phenomenon that needs to be understood better to improve screening and treatment options for cancer patients. Although this issue has been studied extensively for chemotherapy, less is known about a causal link between resistance to radiation therapy and metastasis. We investigated this problem in triple-negative breast cancer (TNBC) and established that radiation resistant tumor cells have enhanced metastatic capacity, especially to bone. Resistance to radiation increases the expression of integrin β3 (ITGβ3), which promotes enhanced migration and invasion. Bioinformatic analysis and subsequent experimentation revealed an enrichment of RNA metabolism pathways that stabilize ITGβ3 transcripts. Specifically, the RNA binding protein heterogenous nuclear ribonucleoprotein L (HNRNPL), whose expression is regulated by Nrf2, mediates the formation of circular RNAs (circRNAs) that function as competing endogenous RNAs (ceRNAs) for the family of let-7 microRNAs that target ITGβ3. Collectively, our findings identify a novel mechanism of radiation-induced metastasis that is driven by alterations in RNA metabolism.
Collapse
Affiliation(s)
- Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Kensei Kishimoto
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Rui Li
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brendan Pacheco
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Lihua Julie Zhu
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - William A Flavahan
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
2
|
Liu L, Neve M, Perlaza-Jimenez L, Xi X, Purcell J, Hawdon A, Conn SJ, Zenker J, Tamayo P, Goodall GJ, Rosenbluh J. Systematic loss-of-function screens identify pathway-specific functional circular RNAs. Nat Cell Biol 2024; 26:1359-1372. [PMID: 39095657 DOI: 10.1038/s41556-024-01467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Circular RNA (circRNA) is covalently closed, single-stranded RNA produced by back-splicing. A few circRNAs have been implicated as functional; however, we lack understanding of pathways that are regulated by circRNAs. Here we generated a pooled short-hairpin RNA library targeting the back-splice junction of 3,354 human circRNAs that are expressed at different levels (ranging from low to high) in humans. We used this library for loss-of-function proliferation screens in a panel of 18 cancer cell lines from four tissue types harbouring mutations leading to constitutive activity of defined pathways. Both context-specific and non-specific circRNAs were identified. Some circRNAs were found to directly regulate their precursor, whereas some have a function unrelated to their precursor. We validated these observations with a secondary screen and uncovered a role for circRERE(4-10) and circHUWE1(22,23), two cell-essential circRNAs, circSMAD2(2-6), a WNT pathway regulator, and circMTO1(2,RI,3), a regulator of MAPK signalling. Our work sheds light on pathways regulated by circRNAs and provides a catalogue of circRNAs with a measurable function.
Collapse
Affiliation(s)
- Ling Liu
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Matthew Neve
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura Perlaza-Jimenez
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Genomics and Bioinformatics Platform, Monash University, Clayton, Victoria, Australia
| | - Xinqi Xi
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jacob Purcell
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Azelle Hawdon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Pablo Tamayo
- Division of Genomics and Precision Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry and Molecular Biology, and Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Functional Genomics Platform, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Gabryelska MM, Webb ST, Lin H, Gantley L, Kirk K, Liu R, Stringer BW, Conn VM, Conn SJ. Native Circular RNA Pulldown Method to Simultaneously Profile RNA and Protein Interactions. Methods Mol Biol 2024; 2765:299-309. [PMID: 38381346 DOI: 10.1007/978-1-0716-3678-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circular RNAs (circRNAs) are a widespread, cell-, tissue-, and disease-specific class of largely non-coding RNA transcripts. These single-stranded, covalently-closed transcripts arise through non-canonical splicing of pre-mRNA, a process called back-splicing. Back-splicing results in circRNAs which are distinguishable from their cognate mRNA as they possess a unique sequence of nucleic acids called the backsplice junction (BSJ). CircRNAs have been shown to play key functional roles in various cellular contexts and achieve this through their interaction with other macromolecules, particularly other RNA molecules and proteins. To elucidate the molecular mechanisms underlying circRNA function, it is necessary to identify these interacting partners. Herein, we present an optimized strategy for the simultaneous purification of the circRNA interactome within eukaryotic cells, allowing the identification of both circRNA-RNA and circRNA-protein interactions.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - He Lin
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Laura Gantley
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ryan Liu
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|