1
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 DOI: 10.1101/858118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 PMCID: PMC7606830 DOI: 10.1021/acsnano.0c04866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|