1
|
Scull CE, Dandpat SS, Romero RA, Walter NG. Transcriptional Riboswitches Integrate Timescales for Bacterial Gene Expression Control. Front Mol Biosci 2021; 7:607158. [PMID: 33521053 PMCID: PMC7838592 DOI: 10.3389/fmolb.2020.607158] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Transcriptional riboswitches involve RNA aptamers that are typically found in the 5' untranslated regions (UTRs) of bacterial mRNAs and form alternative secondary structures upon binding to cognate ligands. Alteration of the riboswitch's secondary structure results in perturbations of an adjacent expression platform that controls transcription elongation and termination, thus turning downstream gene expression "on" or "off." Riboswitch ligands are typically small metabolites, divalent cations, anions, signaling molecules, or other RNAs, and can be part of larger signaling cascades. The interconnectedness of ligand binding, RNA folding, RNA transcription, and gene expression empowers riboswitches to integrate cellular processes and environmental conditions across multiple timescales. For a successful response to an environmental cue that may determine a bacterium's chance of survival, a coordinated coupling of timescales from microseconds to minutes must be achieved. This review focuses on recent advances in our understanding of how riboswitches affect such critical gene expression control across time.
Collapse
Affiliation(s)
| | | | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Baronti L, Karlsson H, Marušič M, Petzold K. A guide to large-scale RNA sample preparation. Anal Bioanal Chem 2018; 410:3239-3252. [PMID: 29546546 PMCID: PMC5937877 DOI: 10.1007/s00216-018-0943-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
RNA is becoming more important as an increasing number of functions, both regulatory and enzymatic, are being discovered on a daily basis. As the RNA boom has just begun, most techniques are still in development and changes occur frequently. To understand RNA functions, revealing the structure of RNA is of utmost importance, which requires sample preparation. We review the latest methods to produce and purify a variation of RNA molecules for different purposes with the main focus on structural biology and biophysics. We present a guide aimed at identifying the most suitable method for your RNA and your biological question and highlighting the advantages of different methods. Graphical abstract In this review we present different methods for large-scale production and purification of RNAs for structural and biophysical studies.
Collapse
Affiliation(s)
- Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Maja Marušič
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden.
| |
Collapse
|
3
|
Shaw E, St-Pierre P, McCluskey K, Lafontaine DA, Penedo JC. Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol 2015; 549:313-41. [PMID: 25432755 DOI: 10.1016/b978-0-12-801122-5.00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA folding studies aim to clarify the relationship among sequence, tridimensional structure, and biological function. In the last decade, the application of single-molecule fluorescence resonance energy transfer (sm-FRET) techniques to investigate RNA structure and folding has revealed the details of conformational changes and timescale of the process leading to the formation of biologically active RNA structures with subnanometer resolution on millisecond timescales. In this review, we initially summarize the first wave of single-molecule FRET-based RNA techniques that focused on analyzing the influence of mono- and divalent metal ions on RNA function, and how these studies have provided very valuable information about folding pathways and the presence of intermediate and low-populated states. Next, we describe a second generation of single-molecule techniques that combine sm-FRET with the use of chemical denaturants as an emerging powerful approach to reveal information about the dynamics and energetics of RNA folding that remains hidden using conventional sm-FRET approaches. The main advantages of using the competing interplay between folding agents such as metal ions and denaturants to observe and manipulate the dynamics of RNA folding and RNA-ligand interactions is discussed in the context of the adenine riboswitch aptamer.
Collapse
Affiliation(s)
- Euan Shaw
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Daniel A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom; Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom.
| |
Collapse
|
4
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Zhong Z, Soh LH, Lim MH, Chen G. A U⋅U Pair-to-U⋅C Pair Mutation-Induced RNA Native Structure Destabilisation and Stretching-Force-Induced RNA Misfolding. Chempluschem 2015; 80:1267-1278. [PMID: 31973291 DOI: 10.1002/cplu.201500144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Little is known about how a non-Watson-Crick pair affects the RNA folding dynamics. We studied the effects of a U⋅U-to-U⋅C pair mutation on the folding of a hairpin in human telomerase RNA. The ensemble thermal melting of the hairpins shows an on-pathway intermediate with the disruption of the internal loop structure containing the U⋅U/U⋅C pairs. By using optical tweezers, we applied a stretching force on the terminal ends of the hairpins to probe directly the non-nearest-neighbour effects upon the mutations. The single U⋅U to U⋅C mutations are observed to 1) lower the mechanical unfolding force by approximately 1 picoNewton (pN) per mutation without affecting the unfolding reaction transition-state position (thus suggesting that removing a single hydrogen bond affects the structural dynamics at least two base pairs away), 2) result in more frequent misfolding into a small hairpin at approximately 10 pN and 3) shift the folding reaction transition-state position towards the native hairpin structure and slightly increase the mechanical folding kinetics (thus suggesting that untrapping from the misfolded state is not the rate-limiting step).
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Lai Huat Soh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Ming Hui Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| |
Collapse
|
6
|
Devi G, Zhou Y, Zhong Z, Toh DFK, Chen G. RNA triplexes: from structural principles to biological and biotech applications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:111-28. [DOI: 10.1002/wrna.1261] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Yuan Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
7
|
Stephenson W, Wan G, Tenenbaum SA, Li PTX. Nanomanipulation of single RNA molecules by optical tweezers. J Vis Exp 2014. [PMID: 25177917 DOI: 10.3791/51542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Collapse
Affiliation(s)
- William Stephenson
- Nanoscale Engineering Graduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Gorby Wan
- Nanoscale Science Undergraduate Program, College of Nanoscale Science and Engineering, University at Albany, State University of New York
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, University at Albany, State University of New York; The RNA Institute, University at Albany, State University of New York
| | - Pan T X Li
- The RNA Institute, University at Albany, State University of New York; Department of Biological Sciences, University at Albany, State University of New York;
| |
Collapse
|
8
|
Affiliation(s)
- Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309;
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
9
|
Herrero-Galán E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 2012; 135:122-31. [PMID: 23214411 DOI: 10.1021/ja3054755] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Double-stranded (ds) RNA is the genetic material of a variety of viruses and has been recently recognized as a relevant molecule in cells for its regulatory role. Despite that the elastic response of dsDNA has been thoroughly characterized in recent years in single-molecule stretching experiments, an equivalent study with dsRNA is still lacking. Here, we have engineered long dsRNA molecules for their individual characterization contrasting information with dsDNA molecules of the same sequence. It is known that dsRNA is an A-form molecule unlike dsDNA, which exhibits B-form in physiological conditions. These structural types are distinguished at the single-molecule level with atomic force microscopy (AFM) and are the basis to understand their different elastic response. Force-extension curves of dsRNA with optical and magnetic tweezers manifest two main regimes of elasticity, an entropic regime whose end is marked by the A-form contour-length and an intrinsic regime that ends in a low-cooperative overstretching transition in which the molecule extends to 1.7 times its A-form contour-length. DsRNA does not switch between the A and B conformations in the presence of force. Finally, dsRNA presents both a lower stretch modulus and overstretching transition force than dsDNA, whereas the electrostatic and intrinsic contributions to the persistence length are larger.
Collapse
Affiliation(s)
- Elías Herrero-Galán
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 2012; 41:1901-13. [PMID: 23248007 PMCID: PMC3561942 DOI: 10.1093/nar/gks1254] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV) requires a programmed −1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem–loop structure. Here we investigate the role of the RNA structure in promoting the −1 frameshift. The stem–loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3–4 bp in the stem–loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Šimková E, Staněk D. Probing nucleic acid interactions and pre-mRNA splicing by Förster Resonance Energy Transfer (FRET) microscopy. Int J Mol Sci 2012; 13:14929-45. [PMID: 23203103 PMCID: PMC3509619 DOI: 10.3390/ijms131114929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023] Open
Abstract
Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental approaches recently used for either in vitro or in vivo studies. Next, we summarize how FRET contributed to the understanding of pre-mRNA splicing and spliceosome assembly.
Collapse
Affiliation(s)
- Eva Šimková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic; E-Mail:
| | - David Staněk
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic; E-Mail:
| |
Collapse
|
12
|
Giambaşu GM, Lee TS, Scott WG, York DM. Mapping L1 ligase ribozyme conformational switch. J Mol Biol 2012; 423:106-22. [PMID: 22771572 DOI: 10.1016/j.jmb.2012.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023]
Abstract
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5'-to-3' phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three-state/two-step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
13
|
Abstract
There are two RNA worlds. The first is the primordial RNA world, a hypothetical era when RNA served as both information and function, both genotype and phenotype. The second RNA world is that of today's biological systems, where RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins, in regulating gene expression, and in the constant battle between infectious agents trying to subvert host defense systems and host cells protecting themselves from infection. This second RNA world is not at all hypothetical, and although we do not have all the answers about how it works, we have the tools to continue our interrogation of this world and refine our understanding. The fun comes when we try to use our secure knowledge of the modern RNA world to infer what the primordial RNA world might have looked like.
Collapse
Affiliation(s)
- Thomas R Cech
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA.
| |
Collapse
|
14
|
Fourmy D, Yoshizawa S. Protein-RNA footprinting: an evolving tool. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:557-66. [PMID: 22566372 DOI: 10.1002/wrna.1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As more RNA molecules with important cellular functions are discovered, there is a strong need to characterize their structures, functions, and interactions. Chemical and enzymatic footprinting methods are used to map RNA secondary and tertiary structure, to monitor ligand interactions and conformational changes, and in the study of protein-RNA interactions. These methods provide data at single-nucleotide resolution that nicely complements the structural information available from X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), or cryo-electron microscopy. Footprinting methods also complement the dynamic information derived from single-molecule Förster resonance energy transfer. RNA footprinting tools have been used for decades, but we have recently seen spectacular advances, for instance, the use in combination with massive parallel sequencing techniques. Large libraries of RNA molecules (small or large in size) can now be probed in high-throughput manner when RNA footprinting methods are combined with fluorescent probe technologies and automation. In this article, after a brief historical overview, we summarize recent advances in RNA-protein footprinting methodologies that now integrate tools for massive parallel analysis.
Collapse
Affiliation(s)
- Dominique Fourmy
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
| | | |
Collapse
|
15
|
Bizarro CV, Alemany A, Ritort F. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods. Nucleic Acids Res 2012; 40:6922-35. [PMID: 22492710 PMCID: PMC3413104 DOI: 10.1093/nar/gks289] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na(+)]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg(2+) salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs.
Collapse
Affiliation(s)
- C V Bizarro
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | | | | |
Collapse
|
16
|
Yoshizawa S. Micro and nanotechnological tools for study of RNA. Biochimie 2012; 94:1588-94. [PMID: 22484393 DOI: 10.1016/j.biochi.2012.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
Micro and nanotechnologies have originally contributed to engineering, especially in electronics. These technologies enable fabrication and assembly of materials at micrometer and nanometer scales and the manipulation of nano-objects. The power of these technologies has now been exploited in analyzes of biologically relevant molecules. In this review, the use of micro and nanotechnological tools in RNA research is described.
Collapse
Affiliation(s)
- Satoko Yoshizawa
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, FRC3115 1 Ave de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Banerjee AG, Chowdhury S, Losert W, Gupta SK. Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:051302. [PMID: 21639562 DOI: 10.1117/1.3579200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Optical tweezers have emerged as a promising technique for manipulating biological objects. Instead of direct laser exposure, more often than not, optically-trapped beads are attached to the ends or boundaries of the objects for translation, rotation, and stretching. This is referred to as indirect optical manipulation. In this paper, we utilize the concept of robotic gripping to explain the different experimental setups which are commonly used for indirect manipulation of cells, nucleic acids, and motor proteins. We also give an overview of the kind of biological insights provided by this technique. We conclude by highlighting the trends across the experimental studies, and discuss challenges and promising directions in this domain of active current research.
Collapse
Affiliation(s)
- Ashis Gopal Banerjee
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|