1
|
Yan Y, Tian J, Wang Y, Li Y, Zhang C, Zhang S, Lin P, Peng R, Zhao C, Zhuang L, Lai B, Zhou L, Zhang G, Li H. Transcriptomic Heterogeneity of Skin Across Different Anatomic Sites. J Invest Dermatol 2023; 143:398-407.e5. [PMID: 36122800 DOI: 10.1016/j.jid.2022.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023]
Abstract
Multiomic studies, including RNA sequencing, single-cell RNA sequencing, and epigenomics, can provide insight into the connection between anatomically heterogeneous gene expression profile of the skin and dermatoses-predisposed sites, in which RNA sequencing is essential. Therefore, in this study, 159 skin samples collected mainly from discarded normal skin tissue during surgical treatment for benign skin tumors were used for RNA sequencing. On the basis of cluster analysis, the skin was divided into four regions, with each region showing specific physiological characteristics through differentially expressed gene analysis. The results showed that the head and neck region, perineum, and palmoplantar area were closely associated with lipid metabolism, hormone metabolism, blood circulation, and related neural regulation, respectively. Transcription factor enrichment indicated that different regions were associated with the development of adjacent tissues. Specifically, the head and neck region, trunk and extremities, perineum, and palmoplantar area were associated with the central nervous, axial, urogenital, and vascular systems, respectively. The results were imported into an open website (https://dermvis.github.io/) for retrieval. Our transcriptomic data elucidated that human skin exhibits transcriptomic heterogeneity reflecting physiological and developmental variation at different anatomic sites and provided guidance for further studies on skin development and dermatoses predisposed sites.
Collapse
Affiliation(s)
- Yicen Yan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Jie Tian
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yurong Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Chong Zhang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Shenxi Zhang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Rui Peng
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Chunxia Zhao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Le Zhuang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Binbin Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Liang Zhou
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Guohong Zhang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Pathology Department, Shantou University Medical College, Guangdong, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China.
| |
Collapse
|
2
|
Pechriggl E, Blumer M, Tubbs RS, Olewnik Ł, Konschake M, Fortélny R, Stofferin H, Honis HR, Quinones S, Maranillo E, Sanudo J. Embryology of the Abdominal Wall and Associated Malformations—A Review. Front Surg 2022; 9:891896. [PMID: 35874129 PMCID: PMC9300894 DOI: 10.3389/fsurg.2022.891896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
In humans, the incidence of congenital defects of the intraembryonic celom and its associated structures has increased over recent decades. Surgical treatment of abdominal and diaphragmatic malformations resulting in congenital hernia requires deep knowledge of ventral body closure and the separation of the primary body cavities during embryogenesis. The correct development of both structures requires the coordinated and fine-tuned synergy of different anlagen, including a set of molecules governing those processes. They have mainly been investigated in a range of vertebrate species (e.g., mouse, birds, and fish), but studies of embryogenesis in humans are rather rare because samples are seldom available. Therefore, we have to deal with a large body of conflicting data concerning the formation of the abdominal wall and the etiology of diaphragmatic defects. This review summarizes the current state of knowledge and focuses on the histological and molecular events leading to the establishment of the abdominal and thoracic cavities in several vertebrate species. In chronological order, we start with the onset of gastrulation, continue with the establishment of the three-dimensional body shape, and end with the partition of body cavities. We also discuss well-known human etiologies.
Collapse
Affiliation(s)
- Elisabeth Pechriggl
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Michael Blumer
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - R. Shane Tubbs
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George’s University, St. George’s, Grenada, West Indies
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- University of Queensland, Brisbane, Australia
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Lodz, Poland
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Correspondence: Marko Konschake
| | - René Fortélny
- Department of General, Visceral, and Oncological Surgery, Wilhelminenspital, Vienna, Austria
| | - Hannes Stofferin
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Hanne Rose Honis
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Sara Quinones
- Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Eva Maranillo
- Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Sanudo
- Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Gomes de Almeida P, Rifes P, Martins-Jesus AP, Pinheiro GG, Andrade RP, Thorsteinsdóttir S. Cell–Fibronectin Interactions and Actomyosin Contractility Regulate the Segmentation Clock and Spatio-Temporal Somite Cleft Formation during Chick Embryo Somitogenesis. Cells 2022; 11:cells11132003. [PMID: 35805087 PMCID: PMC9266262 DOI: 10.3390/cells11132003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Fibronectin is essential for somite formation in the vertebrate embryo. Fibronectin matrix assembly starts as cells emerge from the primitive streak and ingress in the unsegmented presomitic mesoderm (PSM). PSM cells undergo cyclic waves of segmentation clock gene expression, followed by Notch-dependent upregulation of meso1 in the rostral PSM which induces somite cleft formation. However, the relevance of the fibronectin matrix for these molecular processes remains unknown. Here, we assessed the role of the PSM fibronectin matrix in the spatio-temporal regulation of chick embryo somitogenesis by perturbing (1) extracellular fibronectin matrix assembly, (2) integrin–fibronectin binding, (3) Rho-associated protein kinase (ROCK) activity and (4) non-muscle myosin II (NM II) function. We found that integrin–fibronectin engagement and NM II activity are required for cell polarization in the nascent somite. All treatments resulted in defective somitic clefts and significantly perturbed meso1 and segmentation clock gene expression in the PSM. Importantly, inhibition of actomyosin-mediated contractility increased the period of hairy1/hes4 oscillations from 90 to 120 min. Together, our work strongly suggests that the fibronectin–integrin–ROCK–NM II axis regulates segmentation clock dynamics and dictates the spatio-temporal localization of somitic clefts.
Collapse
Affiliation(s)
- Patrícia Gomes de Almeida
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rifes
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
| | - Ana P. Martins-Jesus
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Gonçalo G. Pinheiro
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal; (A.P.M.-J.); (R.P.A.)
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c—CHANGE, Departmento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal; (P.G.d.A.); (P.R.); (G.G.P.)
- Correspondence:
| |
Collapse
|
4
|
Linde-Medina M, Smit TH. Molecular and Mechanical Cues for Somite Periodicity. Front Cell Dev Biol 2021; 9:753446. [PMID: 34901002 PMCID: PMC8663771 DOI: 10.3389/fcell.2021.753446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Somitogenesis refers to the segmentation of the paraxial mesoderm, a tissue located on the back of the embryo, into regularly spaced and sized pieces, i.e., the somites. This periodicity is important to assure, for example, the formation of a functional vertebral column. Prevailing models of somitogenesis are based on the existence of a gene regulatory network capable of generating a striped pattern of gene expression, which is subsequently translated into periodic tissue boundaries. An alternative view is that the pre-pattern that guides somitogenesis is not chemical, but of a mechanical origin. A striped pattern of mechanical strain can be formed in physically connected tissues expanding at different rates, as it occurs in the embryo. Here we argue that both molecular and mechanical cues could drive somite periodicity and suggest how they could be integrated.
Collapse
Affiliation(s)
| | - Theodoor H. Smit
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| |
Collapse
|
5
|
Glimm T, Bhat R, Newman SA. Multiscale modeling of vertebrate limb development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1485. [PMID: 32212250 DOI: 10.1002/wsbm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/07/2022]
Abstract
We review the current state of mathematical modeling of cartilage pattern formation in vertebrate limbs. We place emphasis on several reaction-diffusion type models that have been proposed in the last few years. These models are grounded in more detailed knowledge of the relevant regulatory processes than previous ones but generally refer to different molecular aspects of these processes. Considering these models in light of comparative phylogenomics permits framing of hypotheses on the evolutionary order of appearance of the respective mechanisms and their roles in the fin-to-limb transition. This article is categorized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Developmental Processes in Health and Disease Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, Washington
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
6
|
Abstract
Segment formation in vertebrate embryos is a stunning example of biological self-organization. Here, we present an idealized framework, in which we treat the presomitic mesoderm (PSM) as a one-dimensional line of oscillators. We use the framework to derive constraints that connect the size of somites, and the timing of their formation, to the growth of the PSM and the gradient of the somitogenesis clock period across the PSM. Our analysis recapitulates the observations made recently in ex vivo cultures of mouse PSM cells, and makes predictions for how perturbations, such as increased Wnt levels, would alter somite widths. Finally, our analysis makes testable predictions for the shape of the phase profile and somite widths at different stages of PSM growth. In particular, we show that the phase profile is robustly concave when the PSM length is steady and slightly convex in an important special case when it is decreasing exponentially. In both cases, the phase profile scales with the PSM length; in the latter case, it scales dynamically. This has important consequences for the velocity of the waves that traverse the PSM and trigger somite formation, as well as the effect of errors in phase measurement on somite widths.
Collapse
Affiliation(s)
- Jonas S Juul
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
7
|
Ishimatsu K, Hiscock TW, Collins ZM, Sari DWK, Lischer K, Richmond DL, Bessho Y, Matsui T, Megason SG. Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation. Development 2018; 145:dev.161257. [PMID: 29769221 DOI: 10.1242/dev.161257] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Little is known about how the sizes of animal tissues are controlled. A prominent example is somite size, which varies widely both within an individual and across species. Despite intense study of the segmentation clock governing the timing of somite generation, how it relates to somite size is poorly understood. Here, we examine somite scaling and find that somite size at specification scales with the length of the presomitic mesoderm (PSM) despite considerable variation in PSM length across developmental stages and in surgically size-reduced embryos. Measurement of clock period, axis elongation speed and clock gene expression patterns demonstrate that existing models fail to explain scaling. We posit a 'clock and scaled gradient' model, in which somite boundaries are set by a dynamically scaling signaling gradient across the PSM. Our model not only explains existing data, but also makes a unique prediction that we confirm experimentally - the formation of periodic 'echoes' in somite size following perturbation of the size of one somite. Our findings demonstrate that gradient scaling plays a central role in both progression and size control of somitogenesis.
Collapse
Affiliation(s)
- Kana Ishimatsu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zach M Collins
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dini Wahyu Kartika Sari
- Gene Regulation Research, Nara Institute of Science and Technology, Nara 630-0101, Japan.,Department of Fisheries, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Gene Regulation Research, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - David L Richmond
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Yasumasa Bessho
- Gene Regulation Research, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Yabe T, Hoshijima K, Yamamoto T, Takada S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 2016; 143:2842-52. [PMID: 27385009 DOI: 10.1242/dev.133173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023]
Abstract
The segmental pattern of somites is generated by sequential conversion of the temporal periodicity provided by the molecular clock. Whereas the basic structure of this clock is conserved among different species, diversity also exists, especially in terms of the molecular network. The temporal periodicity is subsequently converted into the spatial pattern of somites, and Mesp2 plays crucial roles in this conversion in the mouse. However, it remains unclear whether Mesp genes play similar roles in other vertebrates. In this study, we generated zebrafish mutants lacking all four zebrafish Mesp genes by using TALEN-mediated genome editing. Contrary to the situation in the mouse Mesp2 mutant, in the zebrafish Mesp quadruple mutant embryos the positions of somite boundaries were clearly determined and morphological boundaries were formed, although their formation was not completely normal. However, each somite was caudalized in a similar manner to the mouse Mesp2 mutant, and the superficial horizontal myoseptum and lateral line primordia were not properly formed in the quadruple mutants. These results clarify the conserved and species-specific roles of Mesp in the link between the molecular clock and somite morphogenesis.
Collapse
Affiliation(s)
- Taijiro Yabe
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Shinji Takada
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
9
|
Sheeba CJ, Andrade RP, Palmeirim I. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development. Semin Cell Dev Biol 2016; 49:125-34. [DOI: 10.1016/j.semcdb.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 01/02/2023]
|
10
|
Yabe T, Takada S. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Dev Growth Differ 2015; 58:31-42. [PMID: 26676827 DOI: 10.1111/dgd.12249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
11
|
Lengyel IM, Soroldoni D, Oates AC, Morelli LG. Nonlinearity arising from noncooperative transcription factor binding enhances negative feedback and promotes genetic oscillations. PAPERS IN PHYSICS 2014; 6:060012. [PMID: 34267827 PMCID: PMC7611245 DOI: 10.4279/pip.060012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We study the effects of multiple binding sites in the promoter of a genetic oscillator. We evaluate the regulatory function of a promoter with multiple binding sites in the absence of cooperative binding, and consider different hypotheses for how the number of bound repressors affects transcription rate. Effective Hill exponents of the resulting regulatory functions reveal an increase in the nonlinearity of the feedback with the number of binding sites. We identify optimal configurations that maximize the nonlinearity of the feedback. We use a generic model of a biochemical oscillator to show that this increased nonlinearity is reflected in enhanced oscillations, with larger amplitudes over wider oscillatory ranges. Although the study is motivated by genetic oscillations in the zebrafish segmentation clock, our findings may reveal a general principle for gene regulation.
Collapse
Affiliation(s)
- Ivan M. Lengyel
- Departamento de F’sica, FCEyN UBA and IFIBA, CONICET; Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Daniele Soroldoni
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew C. Oates
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis G. Morelli
- Departamento de F’sica, FCEyN UBA and IFIBA, CONICET; Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
12
|
Sheeba CJ, Andrade RP, Palmeirim I. Limb patterning: from signaling gradients to molecular oscillations. J Mol Biol 2013; 426:780-4. [PMID: 24316003 DOI: 10.1016/j.jmb.2013.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
The developing forelimb is patterned along the proximal-distal and anterior-posterior axes by opposing gradients of retinoic acid and fibroblast growth factors and by graded sonic hedgehog signaling, respectively. However, how coordinated patterning along both axes is accomplished with temporal precision remains unknown. The limb molecular oscillator hairy2 was recently shown to be a direct readout of the combined signaling activities of retinoic acid, fibroblast growth factor and sonic hedgehog in the limb mesenchyme. Herein, an integrated time-space model is presented to conciliate the progress zone and two-signal models for limb patterning. We propose that the limb clock may allow temporal information to be decoded into positional information when the distance between opposing signaling gradients is no longer sufficient to provide distinct cell fate specification.
Collapse
Affiliation(s)
- Caroline J Sheeba
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Palmeirim
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
13
|
Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J, Levine MS. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 2013; 153:976-87. [PMID: 23706736 DOI: 10.1016/j.cell.2013.04.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/23/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of ∼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.
Collapse
Affiliation(s)
- Mounia Lagha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|