1
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
2
|
Kovale L, Lee S, Song M, Lee J, Son HJ, Sung YK, Kwack MH, Choe W, Kang I, Kim SS, Ha J. Gynostemma pentaphyllum Hydrodistillate and Its Major Component Damulin B Promote Hair Growth-Inducing Properties In Vivo and In Vitro via the Wnt/β-Catenin Pathway in Dermal Papilla Cells. Nutrients 2024; 16:985. [PMID: 38613018 PMCID: PMC11013310 DOI: 10.3390/nu16070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alopecia, a prevalent yet challenging condition with limited FDA-approved treatments which is accompanied by notable side effects, necessitates the exploration of natural alternatives. This study elucidated the hair growth properties of Gynostemma pentaphyllum leaf hydrodistillate (GPHD) both in vitro and in vivo. Furthermore, damulin B, a major component of GPHD, demonstrated hair growth-promoting properties in vitro. Beyond its established anti-diabetic, anti-obesity, and anti-inflammatory attributes, GPHD exhibited hair growth induction in mice parallel to minoxidil. Moreover, it upregulated the expression of autocrine factors associated with hair growth, including VEGF, IGF-1, KGF, and HGF. Biochemical assays revealed that minoxidil, GPHD, and damulin B induced hair growth via the Wnt/β-catenin pathway through AKT signaling, aligning with in vivo experiments demonstrating improved expression of growth factors. These findings suggest that GPHD and damulin B contribute to the hair growth-inducing properties of dermal papilla cells through the AKT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Seoyeon Lee
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Minhyeok Song
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Jihyun Lee
- Easy Hydrogen Corporation, Jeju City 63196, Republic of Korea;
| | - Hyeong Jig Son
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.K.S.); (M.H.K.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.K.S.); (M.H.K.)
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (S.L.); (M.S.); (H.J.S.); (W.C.); (I.K.); (S.S.K.)
| |
Collapse
|
3
|
Abd El-Magid WM, Mohamed RAE, Elsharkawy REE. Diphenylcyclopropenone and platelet-rich plasma in the management of severe or recalcitrant alopecia areata. J Cosmet Dermatol 2023; 22:2971-2981. [PMID: 37313640 DOI: 10.1111/jocd.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alopecia areata (AA) is a common disease characterized by hair loss with an autoimmune background. There are many lines of therapy, but no standard line for all cases. Consequently, treating severe forms of AA is challenging. OBJECTIVE This study aimed to compare the efficacy and safety of the combination of diphenylcyclopropenone (DPCP) and platelet-rich plasma (PRP) with DPCP alone in treating patients with severe or refractory AA. PATIENTS AND METHODS Our randomized clinical trial was conducted on patients with severe and recalcitrant AA. Group A included 13 patients who received only DPCP, while Group B included 11 patients who received both DPCP and PRP. After sensitization in both groups of patients, DPCP was applied to half the scalp weekly. In addition, PRP injection in all scalp was performed once a month in group B. The patients in both groups completed the study for six months. RESULTS The regrowth scale results were 53.85% and 54.5% for groups A and B, respectively. Although the response rate of group B was higher than that of group A, there is no statistically significant difference between the two groups. CONCLUSION From our clinical trial, it can be concluded that DPCP alone or combined with PRP is an effective and safe method for treating severe or recalcitrant AA.
Collapse
Affiliation(s)
- Wafaa Mohamed Abd El-Magid
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | | |
Collapse
|
4
|
Konina K, Freeman TA, Kushner MJ. Atmospheric pressure plasma treatment of skin: penetration into hair follicles. PLASMA SOURCES SCIENCE & TECHNOLOGY 2023; 32:085020. [PMID: 37654601 PMCID: PMC10466460 DOI: 10.1088/1361-6595/acef59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Sterilization of skin prior to surgery is challenged by the reservoir of bacteria that resides in hair follicles. Atmospheric pressure plasma jets (APPJs) have been proposed as a method to treat and deactivate these bacteria as atmospheric plasmas are able to penetrate into structures and crevices with dimensions similar to those found in hair follicles. In this paper, we discuss results from a computational investigation of an APPJ sustained in helium flowing into ambient air, and incident onto a layered dielectric similar to human skin in which there are idealized hair follicles. We found that, depending on the location of the follicle, the bulk ionization wave (IW) incident onto the skin, or the surface IW on the skin, are able to launch IWs into the follicle. The uniformity of treatment of the follicle depends on the location of the first entry of the plasma into the follicle on the top of the skin. Typically, only one side of the follicle is treated on for a given plasma pulse, with uniform treatment resulting from rastering the plasma jet across the follicle over many pulses. Plasma treatment of the follicle is sensitive to the angle of the follicle with respect to the skin, width of the follicle pocket, conductivity of the dermis and thickness of the underlying subcutaneous fat layer, the latter due to the change in capacitance of the tissue.
Collapse
Affiliation(s)
- Kseniia Konina
- Nuclear Engineering and Radiological Sciences Department, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109-2104, United States of America
| | - Theresa A Freeman
- Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Mark J Kushner
- Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, United States of America
| |
Collapse
|
5
|
Forneris Crego AL, Therianou A, Hashemi P, Higgins CA. A catena between psychiatric disorders and non-scarring alopecias-A systematic review. SKIN HEALTH AND DISEASE 2023; 3:e194. [PMID: 37275427 PMCID: PMC10233074 DOI: 10.1002/ski2.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
For many years, clinical observations have suggested that there is an intrinsic connection between psychological state and skin diseases. Stress responses are typically mediated by several hormones, which are modulated via the hypothalamic-pituitary-adrenal axis. This typical stress response is not only one theory for psychiatry disorder pathophysiology, but it also modifies hair growth by altering the skin's inflammatory environment. Given that different forms of hair loss, such as androgenetic alopecia, alopecia areata, or telogen effluvium, and hair follicle cycling can be altered by immune cells within the follicle milieu, we hypothesized that specific forms of hair loss are correlated to psychiatric illnesses. To address this, we conducted a systematic review by searches in April and May 2021 through Ovid MEDLINE and PUBMED (ranging from 1951 to the present day), identifying 179 reports. A further 24 reports were identified through website and citation searches giving a total of 201 reports. After applying exclusion criteria, 21 papers were reviewed, and 17 were included for data analysis. It is undeniable that hair loss greatly affects Health-related Quality of Life (HrQol) and it is heavily associated with major depressive disorder and anxiety. The correlation between hair loss and mental health disorders was significant, however, due to the low number of publications with quantitative data we were not able to identify correlations between each hair loss type with each psychiatric disorder. Further studies to better connect specific hair loss diseases to specific disorders are therefore critical in bettering the way both psychiatric disease, and hair loss, are managed.
Collapse
|
6
|
Henne SK, Nöthen MM, Heilmann-Heimbach S. Male-pattern hair loss: Comprehensive identification of the associated genes as a basis for understanding pathophysiology. MED GENET-BERLIN 2023; 35:3-14. [PMID: 38835416 PMCID: PMC10842561 DOI: 10.1515/medgen-2023-2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Male-pattern hair loss (MPHL) is a highly heritable and prevalent condition that is characterized by progressive hair loss from the frontotemporal and vertex scalp. This androgen-dependent hair loss may commence during puberty, and up to 80 % of European men experience some degree of MPHL during their lifetime. Current treatment options for MPHL have limited efficacy, and improved understanding of the underlying biological causes is required to facilitate novel therapeutic approaches. To date, molecular genetic studies have identified 389 associated genomic regions, have implicated numerous genes in these regions, and suggested pathways that are likely to contribute to key pathophysiological mechanisms in MPHL. This review provides an overview of the current status of MPHL genetic research. We discuss the most significant achievements, current challenges, and anticipated developments in the field, as well as their potential to advance our understanding of hair (loss) biology, and to improve hair loss prediction and treatment.
Collapse
Affiliation(s)
- Sabrina K. Henne
- University Hospital of Bonn & University of BonnInstitute of Human GeneticsBonnGermany
| | - Markus M. Nöthen
- University Hospital of Bonn & University of BonnInstitute of Human GeneticsBonnGermany
| | | |
Collapse
|
7
|
Li R, Yuan X, Zhang L, Jiang X, Li L, Zhang Y, Guo L, Dai X, Cheng H, Jiang X, Gou M. 3D printing of microneedle arrays for hair regeneration in a controllable region. MOLECULAR BIOMEDICINE 2023; 4:1. [PMID: 36602633 PMCID: PMC9816368 DOI: 10.1186/s43556-022-00102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Hair loss is a common skin disease that causes intense emotional suffering. Hair regeneration in a personalized area is highly desirable for patients with different balding conditions. However, the existing pharmaceutical treatments have difficulty precisely regenerating hair in a desired area. Here, we show a method to precisely control the hair regeneration using customized microneedle arrays (MNAs). The MNA with a customized shape is fast fabricated by a static optical projection lithography process in seconds, which is a 3D printing technology developed by our group. In the mouse model, MNA treatment could induce hair regrowth in a defined area corresponding to the customized shape of MNA. And the regenerated hair promoted by MNAs had improved quality. Cellular and molecular analysis indicated that MNA treatment could recruit macrophages in situ and then initiate the proliferation of hair follicle stem cells, thereby improving hair regeneration. Meanwhile, the activation of the Wnt/β-catenin signaling pathway was observed in hair follicles. The expressions of Hgf, Igf 1 and Tnf-α were also upregulated in the treated skin, which may also be beneficial for the MNA-induced hair regeneration. This study provides a strategy to precisely control hair regeneration using customized microneedle arrays by recruiting macrophages in situ, which holds the promise for the personalized treatment of hair loss.
Collapse
Affiliation(s)
- Rong Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xin Yuan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xuebing Jiang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yi Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Linghong Guo
- grid.13291.380000 0001 0807 1581Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xide Dai
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Hao Cheng
- Huahang Microcreate Technology Co., Ltd, 610042 Chengdu, China
| | - Xian Jiang
- grid.13291.380000 0001 0807 1581Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China ,grid.13291.380000 0001 0807 1581Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Maling Gou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| |
Collapse
|
8
|
Gangadaran P, Rajendran RL, Kwack MH, Jeyaraman M, Hong CM, Sung YK, Ahn BC. Application of Cell-Derived Extracellular Vesicles and Engineered Nanovesicles for Hair Growth: From Mechanisms to Therapeutics. Front Cell Dev Biol 2022; 10:963278. [PMID: 35912106 PMCID: PMC9329781 DOI: 10.3389/fcell.2022.963278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hair loss is one of the most common disorders that affect both male and female patients. Cell-derived nanovesicles (CDVs) are natural extracellular vesicles and engineered nanovesicles that can carry various biologicals materials such as proteins, lipids, mRNA, miRNA, and DNA. These vesicles can communicate with local or distant cells and are capable of delivering endogenous materials and exogenous drugs for regenerative therapies. Recent studies revealed that CDVs can serve as new treatment strategies for hair growth. Herein, we review current knowledge on the role of CDVs in applications to hair growth. The in-depth understanding of the mechanisms by which CDVs enable therapeutic effects for hair growth may accelerate successful clinical translation of these vesicles for treating hair loss.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, India.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Noida, India.,Indian Stem Cell Study Group (ISCSG) Association, Lucknow, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Young Kwan Sung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
9
|
Youssef A, Al-Mahdy DA, Sayed RH, Choucry MA, El-Askary H. A Comprehensive Review of Natural Alternatives for Treatment of Alopecia with an Overview of Market Products. J Med Food 2022; 25:869-881. [PMID: 35796701 DOI: 10.1089/jmf.2021.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alopecia or hair loss is a widespread issue that has significant effects on personal well-being for both genders nationally and internationally. In addition, alopecia causes extreme emotional stress and negatively impacts the psychological health and self-esteem of cancer patients suffering from chemotherapy-induced alopecia. Unfortunately, available synthetic medications are costly, invasive, or have extreme adverse effects. On the contrary, natural and herbal hair loss products are widely available in the local and international markets in variable pharmaceutical forms with different mechanisms of action, namely, androgen antagonists, nutritional supplements, vasodilators, and 5α-reductase inhibitors or dihydrotestosterone blockers. Thus, it is of great importance to encourage researchers to investigate these natural alternatives that can act as potent therapeutic agents having diverse mechanisms of action as well as limited side effects. Currently, natural remedies are considered a fast-rising pharmaceutical segment with demand from a wide range of consumers. In this study, we present a review of reported herbal remedies and herb combinations recommended for hair loss and their mode of action, along with an overview of available market products and formulations, their composition, and declared effects. In addition, a general outline of the different forms of alopecia, its causes, and recommended treatments are mentioned as well. This was all done with the aim of assisting further studies with developing standardized natural formulations for alopecia as many were found to lack standardization of their bioactive ingredients and efficiency confirmation.
Collapse
Affiliation(s)
- Alaa Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mouchira A Choucry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
| | - Hesham El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
New Hair Growth Cream Formulation with Cocoa Pod Peel (Theobroma cacao L.). ScientificWorldJournal 2022; 2022:2299725. [PMID: 35320948 PMCID: PMC8938051 DOI: 10.1155/2022/2299725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Our previous study verified that the waste skin of cocoa (Theobroma cacao L) fruit or waste cocoa pod husks had the efficacy to overcome hair loss or alopecia. This study aims to determine the formula and activity of hair cream of cocoa pod peel water fraction, which is effective in stimulating hair growth. Activity testing uses the modified Tanaka method. The results showed that the cocoa husk wastewater fraction could be formulated into hair cream, but there were changes in viscosity and pH after the freeze-thaw test, but still within the allowed limit. The hair cream water fraction gel stimulated hair growth activity based on the hair length data with a significant difference in concentration of the preparation. The best activity in hair cream preparation was at 12.5% concentration. In addition, there were no signs of irritation to the rabbit's skin where hair cream preparation was applied. The results of this study indicated that cocoa fruit peel cream can be used for antialopecia treatments.
Collapse
|
11
|
Kwon YE, Choi SE, Park KH. Regulation of Cytokines and Dihydrotestosterone Production in Human Hair Follicle Papilla Cells by Supercritical Extraction-Residues Extract of Ulmus davidiana. Molecules 2022; 27:molecules27041419. [PMID: 35209207 PMCID: PMC8876631 DOI: 10.3390/molecules27041419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to examine the anti-hair loss mechanism of the supercritical fluid extraction-residues extract of Ulmus davidiana by the regulation of cytokine production and hormone function in human dermal follicle papilla cells (HDFPCs). To investigate the modulatory effects on H2O2-induced cytokines, we measured transforming growth factor-beta and insulin-like growth factor 1 secreted from HDFPCs. To investigate the regulatory effects of supercritical extraction-residues extract of Ulmus davidiana on dihydrotestosterone hormone production, cells were co-incubated with high concentrations of testosterone. The supercritical extraction-residues extract of Ulmus davidiana significantly inhibited the secretion of transforming growth factor-beta but rescued insulin-like growth factor 1 in a dose-dependent manner. The supercritical extraction-residues extract of Ulmus davidiana markedly reduced dihydrotestosterone production. These results suggest that the supercritical fluid extract residues of Ulmus davidiana and their functional molecules are candidates for preventing human hair loss.
Collapse
Affiliation(s)
- Ye-Eun Kwon
- Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (S.-E.C.); (K.-H.P.); Tel.: +82-33-250-8324 (S.-E.C.); +82-62-270-0220 (K.-H.P.)
| | - Kwang-Hyun Park
- Department of Emergency Medicine and BioMedical Science Graduate Program (BMSGP), Chonnam National University, Gwangju 61469, Korea
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Korea
- Correspondence: (S.-E.C.); (K.-H.P.); Tel.: +82-33-250-8324 (S.-E.C.); +82-62-270-0220 (K.-H.P.)
| |
Collapse
|
12
|
Subedi L, Pandey P, Shim JH, Kim KT, Cho SS, Koo KT, Kim BJ, Park JW. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv 2022; 29:328-341. [PMID: 35040730 PMCID: PMC8774136 DOI: 10.1080/10717544.2022.2027046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM–TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM–TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 μM BIM, equivalent to 10 μM minoxidil. Moreover, BIM–TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM–TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM–TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM–TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
13
|
Yuen GKW, Ho BSY, Lin LSY, Dong TTX, Tsim KWK. Tectoridin Stimulates the Activity of Human Dermal Papilla Cells and Promotes Hair Shaft Elongation in Mouse Vibrissae Hair Follicle Culture. Molecules 2022; 27:400. [PMID: 35056713 PMCID: PMC8778330 DOI: 10.3390/molecules27020400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
To search hair growth-promoting herbal extract, a screening platform of having HEK293T fibroblast being transfected with pTOPFLASH DNA construct was developed over a thousand of herbal extracts and phytochemicals were screened. One of the hits was ethanolic extract of Rhizoma Belamcandae, the rhizome of Belamcanda chinensis (L.) DC. Tectoridin, an isoflavone from Rhizoma Belamcandae, was shown to be responsible for this activation of promoter construct, inducing the transcription of pTOPFLASH in the transfected fibroblasts in a dose-dependent manner. The blockage by DKK-1 suggested the action of tectoridin could be mediated by the Wnt receptor. The hair growth-promoting effects of tectoridin were illustrated in human follicular dermal papilla cells and mouse vibrissae organ cultures. In tectoridin-treated dermal papilla cultures, an activation of Wnt signaling was demonstrated by various indicative markers, including TCF/LEF1 transcriptional activity, nuclear translocation of β-catenin, expressions level of mRNAs encoding axin-related protein, (AXIN2), β-catenin, lymphoid enhancer-binding factor-1 (LEF-1), insulin-like growth factor 1 (IGF-1) and alkaline phosphatase (ALP). In addition, an increase of hair shaft elongation was observed in cultured mouse vibrissae upon the treatment of tectoridin. Tectoridin, as well as the herbal extract of Rhizoma Belamcandae, possesses hair promoting activity, which deserves further development.
Collapse
Affiliation(s)
- Gary Ka-Wing Yuen
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (G.K.-W.Y.); (T.T.-X.D.)
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; (B.S.-Y.H.); (L.S.-Y.L.)
| | - Bryan Siu-Yin Ho
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; (B.S.-Y.H.); (L.S.-Y.L.)
| | - Lish Sheng-Ying Lin
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; (B.S.-Y.H.); (L.S.-Y.L.)
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (G.K.-W.Y.); (T.T.-X.D.)
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; (B.S.-Y.H.); (L.S.-Y.L.)
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen 518057, China; (G.K.-W.Y.); (T.T.-X.D.)
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; (B.S.-Y.H.); (L.S.-Y.L.)
| |
Collapse
|
14
|
Zubair Z, Kantamaneni K, Jalla K, Renzu M, Jena R, Jain R, Muralidharan S, Yanamala VL, Alfonso M. Prevalence of Low Serum Vitamin D Levels in Patients Presenting With Androgenetic Alopecia: A Review. Cureus 2021; 13:e20431. [PMID: 35047268 PMCID: PMC8759975 DOI: 10.7759/cureus.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
The role of vitamin D receptor (VDR) has been well established and extensively studied in the hair cycle. Its deficiency is also closely linked to several types of alopecia, including alopecia areata, telogen effluvium, and androgenetic alopecia (AGA). Since there is limited research on the correlation between androgenetic alopecia and low serum vitamin D levels, our review aims to find relevant articles and comprehensively present them. A review of the literature was performed to gain insight into AGA. Specifically, PubMed and Google Scholar databases were searched to identify any relevant articles with a focus on androgenetic alopecia, male pattern baldness, and serum vitamin D levels. References within the included articles were also reviewed and taken into the study if found appropriate. All articles that met the inclusion criteria were analyzed for demographics, clinical, laboratory, radiographic, treatment, and outcomes data. We found 13 relevant studies that elucidated the relationship between low serum vitamin D levels and androgenetic alopecia and included them in the review. We concluded that serum vitamin D might be a possible parameter for diagnosing the onset and severity of AGA. Vitamin D supplementation has proven to be useful in the regrowth of hair in non-human subjects. Vitamin D could be a valid therapeutic approach, such as topical vitamin D (calcipotriol) seems to be a good treatment option to regrow hair follicles and prevent miniaturization of follicles due to androgenetic alopecia.
Collapse
|
15
|
AlMarzoug A, AlOrainy M, AlTawil L, AlHayaza G, AlAnazi R, AlIssa A, AlSheikh A, AlKhalifah A, AlHarithy R. Alopecia areata and tofacitinib: a prospective multicenter study from a Saudi population. Int J Dermatol 2021; 61:886-894. [PMID: 34716573 DOI: 10.1111/ijd.15917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alopecia areata (AA) is an autoimmune disorder characterized by nonscarring hair loss that can involve the scalp, face, and body. Severe AA subtypes have a poorer prognosis and can be challenging to treat. Tofacitinib, a recently introduced Janus kinase inhibitor, has shown positive results in treating AA. This multicenter study demonstrates the efficacy of tofacitinib and the patient response rate in a Saudi population. It also highlights patient characteristics that may serve as predictors of the therapeutic response to tofacitinib. METHODS A prospective cohort study design was utilized. Study participants were included from three medical centers in Riyadh, Saudi Arabia. The Severity of Alopecia Tool (SALT) score was used to assess the percentage of hair loss at baseline and the percentage of hair regrowth at 3 and 6 months. RESULTS The sample size was 68 with an average baseline SALT score of 76.8 ± 27.6%. Data at 6 months were available for 45 patients. Of these, 62.2% achieved a SALT score of >50%. Patients with a score of <50% had a significantly higher baseline SALT score compared to patients with >50% score. The past use of systemic steroids was associated with a diminished response to therapy (P = 0.015). The response to therapy was significantly higher in patients with AA compared to alopecia totalis and alopecia universalis. CONCLUSIONS Tofacitinib is an effective and well-tolerated treatment for severe AA and exhibits a good safety profile.
Collapse
Affiliation(s)
- Alanoud AlMarzoug
- Department of Dermatology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - May AlOrainy
- Department of Dermatology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Lama AlTawil
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ghada AlHayaza
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Rasha AlAnazi
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Afaf AlSheikh
- Department of Dermatology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah AlKhalifah
- Department of Dermatology and Dermatologic Surgery, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ruaa AlHarithy
- Department of Dermatology, Security Forces Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Sasaki GH. The Effects of Lower vs Higher Cell Number of Platelet-Rich Plasma (PRP) on Hair Density and Diameter in Androgenetic Alopecia (AGA): A Randomized, Double-Blinded, Placebo, Parallel-Group Half-Scalp IRB-Approved Study. Aesthet Surg J 2021; 41:NP1659-NP1672. [PMID: 34050738 DOI: 10.1093/asj/sjab236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common disorder in both males and females and may be improved by platelet-rich plasma (PRP) treatment. OBJECTIVES The aim of this study was to compare safety, efficacy, and satisfaction following treatment with a lower or higher number of platelets over 6 months. METHODS This was a prospective randomized, double-blinded, placebo, parallel-group, half-scalp IRB-approved study involving 8 subjects with moderate AGA. Participants received intradermal PRP injections (baseline and Month 3), according to 2 treatment protocols (high vs low platelet numbers) to the frontal and crown portions of the hemiscalp and normal saline to control sites. Phototrichoscans were recorded at baseline and at 6 months, and global photography and subject and investigator satisfaction questionnaires were obtained at baseline, 3, and 6 months. RESULTS At the end of 6-month evaluation period, both groups demonstrated absolute increases in total hair density, follicle diameter, and terminal hair density, as well as absolute and percentage changes at the frontal and crown targeted sites compared with baseline. These improvements tended to occur more often in areas treated with higher platelet numbers than with lower numbers. Vellus hair densities did not exhibit any significant changes with either PRP dosages. The investigator and 6 of the subjects were "satisfied" with the results at 3 months and no adverse reactions were associated with the treatments. CONCLUSIONS Intradermal injections with 2 therapeutic quantities of platelets were equally safe and efficacious for treating men and women with AGA. Higher numbers of platelets may have a greater effect than lower numbers of platelets in regard to hair density, follicle diameter, and terminal hair density but exhibited minimal effects on vellus hair densities at the 6-month evaluation point. Further studies are required to determine whether any significant advantages occur when delivering either lower or higher numbers of platelets in AGA treatments as long as therapeutic levels are administered. LEVEL OF EVIDENCE: 2
Collapse
|
17
|
Yorulmaz A, Hayran Y, Ozdemir AK, Sen O, Genc I, Gur Aksoy G, Yalcin B. Telogen effluvium in daily practice: Patient characteristics, laboratory parameters, and treatment modalities of 3028 patients with telogen effluvium. J Cosmet Dermatol 2021; 21:2610-2617. [PMID: 34449961 DOI: 10.1111/jocd.14413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Telogen effluvium (TE) is a common form of non-scarring alopecia, characterized by excessive shedding of telogen club hairs. OBJECTIVES The aim of the present study was to investigate patient characteristics, laboratory parameters, and treatment strategies in TE. METHODS Electronic records of 3028 patients were retrospectively analyzed. Demographic and clinical data, as well as serum parameters screening for iron, vitamin B12, vitamin D, folate and zinc deficiencies, thyroid function, and ANA titers, were evaluated. RESULTS In the study group, the most frequently performed test type was serum ferritin level (82.3%), followed by complete blood count (81%), both of which revealed that 6.2% of the patients had iron deficiency anemia. 4.6% of the patients had thyroid dysfunction. In screened patients, vitamin and mineral deficiencies were as follows: vitamin D (72.2%), vitamin B12 (30.7%), folate (4.4%), and zinc (2.1%). Women were more likely to be prescribed vitamin D replacement therapy. Iron replacement was the most frequently ordered treatment, comprising 37.5% of total prescriptions. CONCLUSION To the best of our knowledge, this is the most comprehensive retrospective study having the largest number of patients with TE. Our results will not only help to augment knowledge about TE, but also provide a diagnostic algorithm for the laboratory and clinical workup of patients with TE.
Collapse
Affiliation(s)
- Ahu Yorulmaz
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Yildiz Hayran
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Orhan Sen
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Ilgaz Genc
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Gunes Gur Aksoy
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Basak Yalcin
- Department of Dermatology, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
18
|
Hair Growth Stimulation Effect of Centipeda minima Extract: Identification of Active Compounds and Anagen-Activating Signaling Pathways. Biomolecules 2021; 11:biom11070976. [PMID: 34356600 PMCID: PMC8301965 DOI: 10.3390/biom11070976] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Centipeda minima (L.) A. Braun & Asch is a well-studied plant in Chinese medicine that is used for the treatment of several diseases. A recent study has revealed the effects of extract of Cetipeda minima (CMX) standardized by brevilin A in inducing hair growth. However, the mechanism of action of CMX in human hair follicle dermal papilla cells (HFDPCs) has not yet been identified. We aimed to investigate the molecular basis underlying the effect of CMX on hair growth in HFDPCs. CMX induced the proliferation of HFDPCs, and the transcript-level expression of Wnt family member 5a (Wnt5a), frizzled receptor (FZDR), and vascular endothelial growth factor (VEGF) was upregulated. These results correlated with an increase in the expression of growth-related factors, such as VEGF and IGF-1. Immunoblotting and immunocytochemistry further revealed that the phosphorylation of ERK and JNK was enhanced by CMX in HFDPCs, and β-catenin accumulated significantly in a dose-dependent manner. Therefore, CMX substantially induced the expression of Wnt signaling-related proteins, such as GSK phosphorylation and β-catenin. This study supports the hypothesis that CMX promotes hair growth and secretion of growth factors via the Wnt/β-catenin, ERK, and JNK signaling pathways. In addition, computational predictions of drug-likeness, together with ADME property predictions, revealed the satisfactory bioavailability score of CMX compounds, exhibiting high gastrointestinal absorption. We suggest that CMX could be used as a promising treatment for hair regeneration and minimization of hair loss.
Collapse
|
19
|
Žnidarič M, Žurga ŽM, Maver U. Design of In Vitro Hair Follicles for Different Applications in the Treatment of Alopecia-A Review. Biomedicines 2021; 9:biomedicines9040435. [PMID: 33923738 PMCID: PMC8072628 DOI: 10.3390/biomedicines9040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The hair research field has seen great improvement in recent decades, with in vitro hair follicle (HF) models being extensively developed. However, due to the cellular complexity and number of various molecular interactions that must be coordinated, a fully functional in vitro model of HFs remains elusive. The most common bioengineering approach to grow HFs in vitro is to manipulate their features on cellular and molecular levels, with dermal papilla cells being the main focus. In this study, we focus on providing a better understanding of HFs in general and how they behave in vitro. The first part of the review presents skin morphology with an emphasis on HFs and hair loss. The remainder of the paper evaluates cells, materials, and methods of in vitro growth of HFs. Lastly, in vitro models and assays for evaluating the effects of active compounds on alopecia and hair growth are presented, with the final emphasis on applications of in vitro HFs in hair transplantation. Since the growth of in vitro HFs is a complicated procedure, there is still a great number of unanswered questions aimed at understanding the long-term cycling of HFs without losing inductivity. Incorporating other regions of HFs that lead to the successful formation of different hair classes remains a difficult challenge.
Collapse
|
20
|
Shome D, Kapoor R, Vadera S, Doshi K, Patel G, Mohammad Khan T. Evaluation of efficacy of intradermal injection therapy vs derma roller application for administration of QR678 Neo ® hair regrowth formulation for the treatment of Androgenetic Alopecia-A prospective study. J Cosmet Dermatol 2021; 20:3299-3307. [PMID: 33826786 DOI: 10.1111/jocd.14139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 03/29/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Non-surgical hair restoration is one of the most exciting and innovative fields in cosmetic surgery today. The addition of latest technique like derma roller seeks to achieve better results for delivering pharmaceutical solution for hair growth in comparison with topical administration. AIM We aim to compare intradermal injection vs. derma roller technique for administration of QR678Neo® hair regrowth therapy for the treatment of androgenetic alopecia (AGA) in male and female patients. METHOD A sum of 50 patients in the age range of 20-70 years with AGA were included and divided into 2 groups; Group A (intradermal) and Group B (derma roller). Intradermal injection of QR678Neo® formulation and derma roller with superficial application of QR678Neo® was given in each group. Assessment was done using hair pull test, global photographic assessment, video-microscopic assessment, and patient subjective assessment at baseline, 6 months, and 1 year. RESULTS Significant diminution in hair fall was seen in both the groups. All the video-microscopic assessment factors were better in intradermal injection group compared to the derma roller group, but not significant. Erythema and pain were high in derma roller group in compare to intradermal. CONCLUSION Derma roller technique is more convenient and easy to perform, especially when the availability of a trained person to carry out intradermal injection is not feasible, it gives satisfactory results. It is also beneficial in needle phobic and apprehensive patients. Though the results are more efficacious with intradermal scalp injection technique, this study established satisfactory results with derma roller technique as well.
Collapse
Affiliation(s)
- Debraj Shome
- Department of Facial Plastic Surgery & Facial Cosmetic Surgery & Director, The Esthetic Clinics, Mumbai, India
| | - Rinky Kapoor
- Department of Dermatology, Cosmetic Dermatology & Dermato-Surgery, The Esthetic Clinics, Mumbai, India
| | - Sapna Vadera
- Department of Facial Plastic Surgery & Facial Cosmetic Surgery, The Esthetic Clinics, Mumbai, India
| | - Komal Doshi
- Department of Facial Plastic Surgery & Facial Cosmetic Surgery, The Esthetic Clinics, Mumbai, India
| | | | | |
Collapse
|
21
|
Liu W, Li K, Wang G, Yang L, Qu Q, Fan Z, Sun Y, Huang J, Miao Y, Hu Z. Impairment of autophagy may be associated with follicular miniaturization in androgenetic alopecia by inducing premature catagen. J Dermatol 2020; 48:289-300. [PMID: 33258150 DOI: 10.1111/1346-8138.15672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
Androgenetic alopecia is the most common form of hair loss disorder. The features of this process are shortening of the anagen phase in hair cycling and progressive miniaturization of the hair follicle. However, the mechanisms in androgenetic alopecia are still unclear, and the treatment methods are also limited. Therefore, further study on the pathogenesis and new therapies for androgenetic alopecia are urgently needed. In this study, we found that endogenous autophagy was severely impaired, accompanied by increased apoptosis in early catagen-like miniaturized hair follicles from the balding scalps of androgenetic alopecia patients. Moreover, inhibition of autophagy using 3-methyladenine could induce apoptosis, premature hair follicle regression and slow down the hair growth in organ-cultured hair follicles. Taken together, these results suggest that impairment of autophagy could be a potential mechanism in androgenetic alopecia.
Collapse
Affiliation(s)
- Weiwen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients. J Dermatol Sci 2020; 101:49-57. [PMID: 33183906 DOI: 10.1016/j.jdermsci.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. OBJECTIVES To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. METHODS Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we examined the putative functional implication of the most differentially regulated miRNA (miR-324-3p) in differentiation, proliferation and migration of cultured keratinocytes by qRT-PCR, immunofluorescence, and scratch assay. To explore the mechanisms underlying the effects of miR-324-3p, we used specific chemical inhibitors targeting pathways influenced by miR-324-3p. RESULT We provide a comprehensive assessment of the "miRNome" of normal and AGA follicular stem and progenitor cells. Differentially regulated miRNA signatures highlight several miRNA candidates including miRNA-324-3p as mis regulated in patient's stem cells. We find that miR-324-3p promotes differentiation and migration of cultured keratinocytes likely through the regulation of mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-β signaling. Importantly, pharmacological inhibition of the TGF-β signaling pathway using Alk5i promotes hair shaft elongation in an organ-culture system. CONCLUSION Together, we offer a platform for understanding miRNA dynamic regulation in follicular stem and progenitor cells in baldness and highlight miR-324-3p as a promising target for its treatment.
Collapse
|
23
|
Sha K, Chen M, Liu F, Xu S, Wang B, Peng Q, Zhang Y, Xie H, Li J, Deng Z. Platelet factor 4 inhibits human hair follicle growth and promotes androgen receptor expression in human dermal papilla cells. PeerJ 2020; 8:e9867. [PMID: 32953277 PMCID: PMC7476492 DOI: 10.7717/peerj.9867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Platelet-rich plasma (PRP) has been reported recently as a potential therapeutic approach for alopecia, such as androgenetic alopecia, but the exact mechanisms and effects of specific components of this recipe remain largely unknown. In this study, we identified that platelet factor 4 (PF4), a component of PRP, significantly suppressed human hair follicle growth and restrained the proliferation of human dermal papilla cells (hDPCs). Furthermore, our results showed that PF4 upregulated androgen receptor (AR) in human dermal papilla cells in vitro and via hair follicle organ culture. Among the hair growth-promoting and DP-signature genes investigated, PF4 decreased the expression of Wnt5a, Wnt10b, LEF1, HEY1 and IGF-1, and increased DKK1 expression, but did not affect BMP2 and BMP4 expression. Collectively, Our data demonstrate that PF4 suppresses human hair follicle growth possibly via upregulating androgen receptor signaling and modulating hair growth-associated genes, which provides thought-provoking insights into the application and optimization of PRP in treating hair loss.
Collapse
Affiliation(s)
- Ke Sha
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
24
|
Jafferany M, Mkhoyan R, Stamu‐O'Brien C, Carniciu S. Nonpharmacological treatment approach in trichotillomania (hair‐pulling disorder). Dermatol Ther 2020; 33:e13622. [DOI: 10.1111/dth.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Mohammad Jafferany
- Psychodermatology Division, Department of Psychiatry Central Michigan University Saginaw Michigan USA
| | | | - Caroline Stamu‐O'Brien
- Dpartment of Psychiatry, NYU School of Medicine Woodhull Medical and Mental Health Center Brooklyn New York USA
| | - Simona Carniciu
- Dermatology Division Center for Research, Diagnosis and Treatment in Diabetes and Metabolic Diseases Corposana Bucharest Romania
| |
Collapse
|
25
|
Stoneburner J, Shauly O, Carey J, Patel KM, Stevens WG, Gould DJ. Contemporary Management of Alopecia: A Systematic Review and Meta-analysis for Surgeons. Aesthetic Plast Surg 2020; 44:97-113. [PMID: 31667549 DOI: 10.1007/s00266-019-01529-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The decision of surgical approach for hair restoration often involves evaluation of the type of alopecia; however, the impact of surgical hair restoration from existing techniques in specific population subsets has not been comprehensively investigated. OBJECTIVES The authors sought to systematically review the literature on micrografts, minigrafts, mini-micrografts, tissue grafts, tissue flaps and expanders, as well as evaluate graft survival and satisfaction within specific populations in a meta-analysis. METHODS PubMed and Scopus literature searches between 1980 and 2018 yielded 57 articles for systematic review and 34 articles for meta-analysis. Study design, mean patient age and gender, patient alopecia type, surgical hair restoration technique, number of treatment areas, mean follow-up, graft survival rate and satisfaction rate were extracted from each study, and a meta-analysis was performed. RESULTS The pooled rates of graft survival were 84.98% (95% CI 78.90-91.06) using micrografts and 93.11% (95% CI 91.93-94.29) using micrografts and minigrafts in nonscarring alopecia patients, as well as 88.66% (95% CI 80.12-97.20) using micrografts and 86.25% (95% CI 74.00-98.50) using micrografts and minigrafts in scarring alopecia patients. The pooled rates of satisfaction were 89.70% (95% CI 82.64-96.76) using micrografts and 97.00% (95% CI 92.48-100.0) using micrografts and minigrafts in nonscarring alopecia patients, as well as 97.80% (95% CI 94.59-100.0) using micrografts and 88.70% (95% CI 66.49-100.0) using micrografts and minigrafts in scarring alopecia patients. Dot plots depict rates of graft survival rate from micrografts and satisfaction from micrografts and minigrafts. CONCLUSION Surgical hair restoration for nonscarring and scarring alopecia yields high graft survival and satisfaction rates. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Jacqueline Stoneburner
- Keck School of Medicine of USC, University of Southern California, 1510 San Pablo Street, Suite 415, Los Angeles, CA, 90033, USA
| | - Orr Shauly
- Keck School of Medicine of USC, University of Southern California, 1510 San Pablo Street, Suite 415, Los Angeles, CA, 90033, USA
| | - Joseph Carey
- Department of Plastic and Reconstructive Surgery, Keck Hospital of USC, University of Southern California, 1510 San Pablo Street, Suite 415, Los Angeles, CA, 90033, USA
| | - Ketan M Patel
- Department of Plastic and Reconstructive Surgery, Keck Hospital of USC, University of Southern California, 1510 San Pablo Street, Suite 415, Los Angeles, CA, 90033, USA
| | - W Grant Stevens
- Marina Plastic Surgery, Marina Plastic Surgery Associates, 4644 Lincoln Blvd., Suite 552, Marina Del Rey, CA, 90292, USA
| | - Daniel J Gould
- Department of Plastic and Reconstructive Surgery, Keck Hospital of USC, University of Southern California, 1510 San Pablo Street, Suite 415, Los Angeles, CA, 90033, USA.
| |
Collapse
|
26
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [PMID: 31953808 DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Ngwanya RM, Adeola HA, Beach RA, Gantsho N, Walker CL, Pillay K, Prokopetz R, Gumedze F, Khumalo NP. Reliability of Histopathology for the Early Recognition of Fibrosis in Traction Alopecia: Correlation with Clinical Severity. Dermatopathology (Basel) 2019; 6:170-181. [PMID: 31700859 PMCID: PMC6827454 DOI: 10.1159/000500509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/18/2019] [Indexed: 11/30/2022] Open
Abstract
Traction alopecia (TA) is hair loss caused by prolonged pulling or repetitive tension on scalp hair; it belongs to the biphasic group of primary alopecia. It is non-scarring, typically with preservation of follicular stem cells and the potential for regrowth of early lesions especially if traction hairstyles are stopped. However, the alopecia may become permanent (scarring) and fail to respond to treatment if the traction is excessive and prolonged. Hence, the ability to detect fibrosis early in these lesions could predict patients who respond to treatment. Histopathological diagnosis based on scalp biopsies has been used as a gold standard to delineate various forms of non-scarring alopecia and to differentiate them from scarring ones. However, due to potential discrepant reporting as a result of the type of biopsy, method of sectioning, and site of biopsy, histopathology often tends to be unreliable for the early recognition of fibrosis in TA. In this study, 45 patients were assessed using the marginal TA severity scoring system, and their biopsies (both longitudinal and transverse sections) were systematically assessed by three dermatopathologists, the aim being to correlate histopathological findings with clinical staging. Intraclass correlation coefficients were used to determine the level of agreement between the assessors. We found poor agreement of the identification and grading of perifollicular and interfollicular fibrosis (0.55 [0.23–0.75] and 0.01 [2.20–0.41], respectively), and no correlation could be drawn with the clinical severity score. Better methods of diagnosis are needed for grading and for recognition of early fibrosis in TA.
Collapse
Affiliation(s)
| | - Henry Ademola Adeola
- Division of Dermatology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Renée A Beach
- Division of Dermatology and Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nomphelo Gantsho
- Division of Dermatology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher L Walker
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Komala Pillay
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert Prokopetz
- Division of Dermatology and Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Freedom Gumedze
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Division of Dermatology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:35-44. [PMID: 32038756 PMCID: PMC6937163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adipose cells organized in small clusters under the reticular dermis closely interact with hair follicular cells and regulate the hair cycle. Intradermal adipocyte progenitor cells are activated toward the end of the telogen phase to proliferate and differentiate into mature adipocytes. These cells, surrounding the hair follicles, secrete signaling molecules that control the progression of the hair cycle. Diseases associated with defects in adipocyte homeostasis, such as lipodystrophy and focal dermal hypoplasia, lead to alopecia. In this review, we discuss the potential influence of stromal vascular fraction from adipose tissue in the management of alopecia as well as its involvement in preclinical and clinical trials.
Collapse
Affiliation(s)
- Athanasios J Stefanis
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Tomas Groh
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Monika Arenbergerova
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Petr Arenberger
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Peter O Bauer
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| |
Collapse
|
29
|
Guo L, Feng S, Sun B, Jiang X, Liu Y. Benefit and risk profile of tofacitinib for the treatment of alopecia areata: a systemic review and meta‐analysis. J Eur Acad Dermatol Venereol 2019; 34:192-201. [PMID: 31494993 DOI: 10.1111/jdv.15937] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023]
Affiliation(s)
- L. Guo
- Department of Pharmacology West China School of Basic Sciences & Forensic Medicine Animal Research Institute Sichuan University Chengdu China
- Department of Dermatology West China Hospital Sichuan University Chengdu China
- Department of Dermatology The First People's Hospital of Zigong Zigong China
- Department of Basic Medical Sciences Sichuan Vocational College of Health and Rehabilitation Zigong China
| | - S. Feng
- Department of Dermatology The First People's Hospital of Zigong Zigong China
- Department of Basic Medical Sciences Sichuan Vocational College of Health and Rehabilitation Zigong China
| | - B. Sun
- Department of Dermatology West China Hospital Sichuan University Chengdu China
| | - X. Jiang
- Department of Dermatology West China Hospital Sichuan University Chengdu China
| | - Y. Liu
- Department of Pharmacology West China School of Basic Sciences & Forensic Medicine Animal Research Institute Sichuan University Chengdu China
- Department of Dermatology The First People's Hospital of Zigong Zigong China
- Department of Basic Medical Sciences Sichuan Vocational College of Health and Rehabilitation Zigong China
- Department of Anesthesiology Sichuan Cancer Hospital & Institute Sichuan Cancer Center School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
30
|
Hawkshaw N, Hardman J, Alam M, Jimenez F, Paus R. Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. Br J Dermatol 2019; 182:1184-1193. [DOI: 10.1111/bjd.18356] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Affiliation(s)
- N.J. Hawkshaw
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - J.A. Hardman
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - M. Alam
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - F. Jimenez
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - R. Paus
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| |
Collapse
|
31
|
Park DW, Lee HS, Shim MS, Yum KJ, Seo JT. Do Kimchi and Cheonggukjang Probiotics as a Functional Food Improve Androgenetic Alopecia? A Clinical Pilot Study. World J Mens Health 2019; 38:95-102. [PMID: 31385480 PMCID: PMC6920077 DOI: 10.5534/wjmh.180119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Probiotic supplementation demonstrates beneficial effects on serum lipid profiles. We hypothesized that probiotics could benefit patients presenting with alopecia, secondary to improved blood flow to the scalp. MATERIALS AND METHODS Our study included men with stage II to V patterns of hair loss based on the Hamilton-Norwood classification and women with stage I to III patterns of hair loss based on the Ludwig classification. All patients were administered 80 mL of Mogut® (a kimchi and cheonggukjang probiotic product) twice a day. Hair growth and numbers were measured using the Triple Scope System® (KC Technology, Korea) at baseline and after 1 and 4 months of administration of a kimchi and cheonggukjang probiotic product. RESULTS At baseline, the mean hair count was 85.98±20.54 hairs/cm² and the mean thickness was 0.062±0.011 mm in all patients (n=46). Hair count and thickness had significantly increased at 1 month (90.28±16.13 hairs/cm² and 0.068±0.008 mm, respectively) and at 4 months (91.54±16.29 hairs/cm² and 0.066±0.009 mm, respectively). In this study, we found that a kimchi and cheonggukjang probiotic product could promote hair growth and reverse hair loss without associated adverse effects such as diarrhea. CONCLUSIONS We suggest that the observed improvements in hair count and thickness resulted from initiation of the anagen phase in hair follicles in response to probiotics.
Collapse
Affiliation(s)
- Dong Wook Park
- Laboratory of Reproductive Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Hyo Serk Lee
- Department of Urology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | | | | | - Ju Tae Seo
- Department of Urology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Merchán WH, Gómez LA, Chasoy ME, Alfonso-Rodríguez CA, Muñoz AL. Platelet-rich plasma, a powerful tool in dermatology. J Tissue Eng Regen Med 2019; 13:892-901. [PMID: 30793521 DOI: 10.1002/term.2832] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/25/2022]
Abstract
Platelet-rich plasma (PRP), a platelet concentrate contained in a small volume of plasma, has become a promising option in the last decade to treat different diseases related to the skin due to its high concentration of growth factors. When it is of autologous origin, it decreases the probability of suffering adverse reactions and transfusion-transmitted infections, thus it is an optimal and safe therapy for the patient. PRP has been used in the treatment of several dermatological conditions such as acne, alopecia, and skin ulcers. Its use has also extended to other skin conditions such as melasma, hyperpigmentation, and burns, where it stimulates tissue repair and regeneration. The purpose of this article is to review the management and treatment of different dermatological alterations with PRP. Although there are a variety of studies that support the use of PRP, more research is needed to standardise the protocols for obtaining, processing, and applying it as well as understanding the biological and molecular bases of its functioning.
Collapse
Affiliation(s)
| | - Lina A Gómez
- Biomedical Research Center (Cibus), School of Medicine, Universidad de la Sabana, Chía, Colombia
| | - María E Chasoy
- School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Ana L Muñoz
- Cellular and Functional Biology and Biomolecules Engineering Group, School of Science, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
33
|
Brotzu G, Fadda AM, Manca ML, Manca T, Marongiu F, Campisi M, Consolaro F. A liposome-based formulation containing equol, dihomo-γ-linolenic acid and propionyl-l
-carnitine to prevent and treat hair loss: A prospective investigation. Dermatol Ther 2018; 32:e12778. [DOI: 10.1111/dth.12778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
| | | | - Francesca Marongiu
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
| | | | | |
Collapse
|
34
|
Alcalá C, Pzére-Miralles F, Gascón F, Evole M, Estutia M, Gil-Perotín S, Casanova B. Recurrent and universal alopecia areata following alemtuzumab treatment in multiple sclerosis: A secondary autoimmune disease. Mult Scler Relat Disord 2018; 27:406-408. [PMID: 30530069 DOI: 10.1016/j.msard.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/05/2018] [Accepted: 12/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - F Gascón
- Neurology, Hospital La Fe, Valencia, Spain
| | - M Evole
- Neurology, Hospital La Fe, Valencia, Spain
| | - M Estutia
- Neurology, Hospital La Fe, Valencia, Spain
| | | | - B Casanova
- Neurology, Hospital La Fe, Valencia, Spain
| |
Collapse
|
35
|
Wiener DJ, Basak O, Asra P, Boonekamp KE, Kretzschmar K, Papaspyropoulos A, Clevers H. Establishment and characterization of a canine keratinocyte organoid culture system. Vet Dermatol 2018; 29:375-e126. [PMID: 29963730 DOI: 10.1111/vde.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perturbations of epidermal and follicular homeostasis have been attributed to a variety of skin diseases affecting dogs. The availability of an in vitro system to investigate these diseases is important to understand underlying pathomechanisms. OBJECTIVES To establish an accurate and reliable in vitro 3D system of canine keratinocyte organoids to lay the basis for studying functional defects in interfollicular epidermis (IFE) and hair follicle (HF) morphogenesis, reconstitution and differentiation that lead to alopecic and epidermal diseases. ANIMALS Skin biopsies were obtained from freshly euthanized dogs of different breeds with no skin abnormalities. METHODS Cells derived from microdissected IFE and HFs were seeded in Matrigel and keratinocyte organoids were grown and characterized using immunohistochemistry, RT-qPCR and RNA sequencing. RESULTS Both organoid lines develop into a basal IFE-like cell type. Gene and protein expression analysis revealed high mRNA and protein levels of keratins 5 and 14, IFE differentiation markers and intercellular molecules. Key markers of HF stem cells were lacking. Withdrawal of growth factors resulted in upregulation of markers such as KRT16, Involucrin, KRT17 and SOX9, showing the potential of the organoids to develop towards more differentiated tissue. CONCLUSION AND CLINICAL IMPORTANCE Our 3D in vitro culture system provides the basis to explore epidermal function, to investigate the culture conditions necessary for the development of organoids with a HF signature and to address cutaneous disorders in dogs. However, for induction of HF signatures or hair growth, addition of different growth factors or co-culture with dermal papilla will be required.
Collapse
Affiliation(s)
- Dominique J Wiener
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, Inselspital, Bern University Hospital, Freiburgstrasse 14, 3010, Bern, Switzerland.,Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Priyanca Asra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kim E Boonekamp
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Angelos Papaspyropoulos
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands.,Princess Máxima Centre for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
36
|
Poonia K, Thami GP, Bhalla M, Jaiswal S, Sandhu J. NonScarring Diffuse Hair Loss in Women: a Clinico‐Etiological Study from tertiary care center in North‐West India. J Cosmet Dermatol 2018; 18:401-407. [DOI: 10.1111/jocd.12559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Kavita Poonia
- Department of Dermatology, Venereology and Leprology Government Medical College and Hospital Chandigarh India
| | - Gurvinder Pal Thami
- Department of Dermatology, Venereology and Leprology Government Medical College and Hospital Chandigarh India
| | - Mala Bhalla
- Department of Dermatology, Venereology and Leprology Government Medical College and Hospital Chandigarh India
| | - Shivani Jaiswal
- Department of Biochemistry Government Medical College and Hospital Chandigarh India
| | - Jasleen Sandhu
- Department of Dermatology, Venereology and Leprology Government Medical College and Hospital Chandigarh India
| |
Collapse
|
37
|
Xing F, Yi WJ, Miao F, Su MY, Lei TC. Baicalin increases hair follicle development by increasing canonical Wnt/β‑catenin signaling and activating dermal papillar cells in mice. Int J Mol Med 2018; 41:2079-2085. [PMID: 29336472 PMCID: PMC5810219 DOI: 10.3892/ijmm.2018.3391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalin is a traditional Chinese herbal medicine commonly used for hair loss, the precise molecular mechanism of which is unknown. In the present study, the mechanism of baicalin was investigated via the topical application of baicalin to reconstituted hair follicles on mice dorsa and evaluating the effect on canonical Wnt/β‑catenin signaling in the hair follicles and the activity of dermal papillar cells. The results indicate that baicalin stimulates the expression of Wnt3a, Wnt5a, frizzled 7 and disheveled 2 whilst inhibiting the Axin/casein kinase 1α/adenomatous polyposis coli/glycogen synthase kinase 3β degradation complex, leading to accumulation of β‑catenin and activation of Wnt/β‑catenin signaling. In addition, baicalin was observed to increase the alkaline phosphatase levels in dermal papillar cells, a process which was dependent on Wnt pathway activation. Given its non‑toxicity and ease of topical application, baicalin represents a promising treatment for alopecia and other forms of hair loss. Further studies of baicalin using human hair follicle transplants are warranted in preparation for future clinical use.
Collapse
Affiliation(s)
- Fei Xing
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wen-Juan Yi
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Fang Miao
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Meng-Yun Su
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Tie-Chi Lei
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
38
|
Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun 2017; 8:14694. [PMID: 28272467 PMCID: PMC5344973 DOI: 10.1038/ncomms14694] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Male-pattern baldness (MPB) is a common and highly heritable trait characterized by androgen-dependent, progressive hair loss from the scalp. Here, we carry out the largest GWAS meta-analysis of MPB to date, comprising 10,846 early-onset cases and 11,672 controls from eight independent cohorts. We identify 63 MPB-associated loci (P<5 × 10-8, METAL) of which 23 have not been reported previously. The 63 loci explain ∼39% of the phenotypic variance in MPB and highlight several plausible candidate genes (FGF5, IRF4, DKK2) and pathways (melatonin signalling, adipogenesis) that are likely to be implicated in the key-pathophysiological features of MPB and may represent promising targets for the development of novel therapeutic options. The data provide molecular evidence that rather than being an isolated trait, MPB shares a substantial biological basis with numerous other human phenotypes and may deserve evaluation as an early prognostic marker, for example, for prostate cancer, sudden cardiac arrest and neurodegenerative disorders.
Collapse
|
39
|
Nilforoushzadeh M, Rahimi Jameh E, Jaffary F, Abolhasani E, Keshtmand G, Zarkob H, Mohammadi P, Aghdami N. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice. CELL JOURNAL 2017; 19:259-268. [PMID: 28670518 PMCID: PMC5412784 DOI: 10.22074/cellj.2016.3916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/28/2016] [Indexed: 11/16/2022]
Abstract
Objective Dermal papilla and hair epithelial stem cells regulate hair formation and
the growth cycle. Damage to or loss of these cells can cause hair loss. Although
several studies claim to reconstitute hairs using rodent cells in an animal model,
additional research is needed to develop a stable human hair follicle reconstitution
protocol. In this study, we have evaluated hair induction by injecting adult cultured
human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in
a mouse model.
Materials and Methods In this experimental study, discarded human scalp skins were
used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured
and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into
three groups that received injections in their dorsal skin. The first group received cultured
dermal papilla cells, the second group received a mixture of cultured epithelial and dermal
papilla cells, and the third group (control) received a placebo [phosphate-buffered saline
(PBS-)].
Results Histopathologic examination of the injection sites showed evidence of hair
growth in samples that received cells compared with the control group. However, the
group that received epithelial and dermal papilla cells had visible evidence of hair growth.
PKH tracing confirmed the presence of transplanted cells in the new hair.
Conclusion Our data showed that injection of a combination of adult human cultured
dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells
could induce new hair in nude mice.
Collapse
Affiliation(s)
| | - Elham Rahimi Jameh
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Jaffary
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Abolhasani
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Gelavizh Keshtmand
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Hajar Zarkob
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Mohammadi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
40
|
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human Hair Reconstruction: Close, But Yet So Far. Stem Cells Dev 2016; 25:1767-1779. [PMID: 27649771 DOI: 10.1089/scd.2016.0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Billions of dollars are annually invested in pharmaceutical industry and cosmetic sector with intent to develop new drugs and treatment strategies for alopecia. Because the hair looks an important characteristic of humans-an effective appendage in perception, expression of beauty, and preservation of self-esteem-the global market for hair loss treatment products is exponentially increasing. However, current methods to treat hair loss endure yet multiple challenges, such as unfavorable outcomes, nonpermanent and patient-dependent results, as well as unpredictable impacts, which limit their application. Over recent years, remarkable advances in the fields of regenerative medicine and hair tissue engineering have raised new hopes for introducing novel cell-based approaches to treat hair loss. Through cell-based approaches, it is possible to produce hair-like structures in the laboratory setting or manipulate cells in their native niche (in vivo lineage reprogramming) to reconstruct the hair follicle. However, challenging issues still exist with the functionality of cultured human hair cells, the proper selection of nonhair cell sources in cases of shortage of donor hair, and the development of defined culture conditions. Moreover, in the case of in vivo lineage reprogramming, selecting appropriate induction factors and their efficient delivery to guide resident cells into a hair fate-with the aim of reconstructing functional hair-still needs further explorations. In this study, we highlight recent advances and current challenges in hair loss treatment using cell-based approaches and provide novel insights for crucial steps, which must be taken into account to develop reproducible, safe, and efficient cell-based treatment.
Collapse
Affiliation(s)
- Parvaneh Mohammadi
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Khalil Kass Youssef
- 3 Department of Developmental Neurobiology, Instituto de Neurociencias CSIC-UMH , San Juan de Alicante, Spain
| | - Saeed Abbasalizadeh
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Hossein Baharvand
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Nasser Aghdami
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| |
Collapse
|
41
|
Heilmann-Heimbach S, Hochfeld LM, Paus R, Nöthen MM. Hunting the genes in male-pattern alopecia: how important are they, how close are we and what will they tell us? Exp Dermatol 2016; 25:251-7. [DOI: 10.1111/exd.12965] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Heilmann-Heimbach
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Lara M. Hochfeld
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Münster; Münster Germany
| | - Markus M. Nöthen
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
| |
Collapse
|
42
|
The Thyroid Hormone Analogue KB2115 (Eprotirome) Prolongs Human Hair Growth (Anagen) Ex Vivo. J Invest Dermatol 2016; 136:1711-1714. [PMID: 27066887 DOI: 10.1016/j.jid.2016.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023]
|