1
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
2
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|