1
|
Structure of a P element transposase-DNA complex reveals unusual DNA structures and GTP-DNA contacts. Nat Struct Mol Biol 2019; 26:1013-1022. [PMID: 31659330 DOI: 10.1038/s41594-019-0319-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
Abstract
P element transposase catalyzes the mobility of P element DNA transposons within the Drosophila genome. P element transposase exhibits several unique properties, including the requirement for a guanosine triphosphate cofactor and the generation of long staggered DNA breaks during transposition. To gain insights into these features, we determined the atomic structure of the Drosophila P element transposase strand transfer complex using cryo-EM. The structure of this post-transposition nucleoprotein complex reveals that the terminal single-stranded transposon DNA adopts unusual A-form and distorted B-form helical geometries that are stabilized by extensive protein-DNA interactions. Additionally, we infer that the bound guanosine triphosphate cofactor interacts with the terminal base of the transposon DNA, apparently to position the P element DNA for catalysis. Our structure provides the first view of the P element transposase superfamily, offers new insights into P element transposition and implies a transposition pathway fundamentally distinct from other cut-and-paste DNA transposases.
Collapse
|
2
|
Srivastava S, Dahal S, Naidu SJ, Anand D, Gopalakrishnan V, Kooloth Valappil R, Raghavan SC. DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination. DNA Res 2017; 24:117-128. [PMID: 28431013 PMCID: PMC5397610 DOI: 10.1093/dnares/dsw059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/08/2016] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand breaks (DSBs) are mostly repaired by nonhomologous end joining (NHEJ) and homologous recombination (HR) in higher eukaryotes. In contrast, HR-mediated DSB repair is the major double-strand break repair pathway in lower order organisms such as bacteria and yeast. Penaeus monodon, commonly known as black tiger shrimp, is one of the economically important crustaceans facing large-scale mortality due to exposure to infectious diseases. The animals can also get exposed to chemical mutagens under the culture conditions as well as in wild. Although DSB repair mechanisms have been described in mammals and some invertebrates, its mechanism is unknown in the shrimp species. In the present study, we show that HR-mediated DSB repair is the predominant mode of repair in P. monodon. Robust repair was observed at a temperature of 30 °C, when 2 µg of cell-free extract derived from hepatopancreas was used for the study. Although HR occurred through both reciprocal recombination and gene conversion, the latter was predominant when the bacterial colonies containing recombinants were evaluated. Unlike mammals, NHEJ-mediated DSB repair was undetectable in P. monodon. However, we could detect evidence for an alternative mode of NHEJ that uses microhomology, termed as microhomology-mediated end joining (MMEJ). Interestingly, unlike HR, MMEJ was predominant at lower temperatures. Therefore, the results suggest that, while HR is major DSB repair pathway in shrimp, MMEJ also plays a role in ensuring the continuity and stability of the genome.
Collapse
Affiliation(s)
- Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sharanya J Naidu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Deepika Anand
- ICAR-Central Institute of Fisheries Education, Mumbai 400 061, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
3
|
Paternal Induction of Hybrid Dysgenesis in Drosophila melanogaster Is Weakly Correlated with Both P-Element and hobo Element Dosage. G3-GENES GENOMES GENETICS 2017; 7:1487-1497. [PMID: 28315830 PMCID: PMC5427502 DOI: 10.1534/g3.117.040634] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposable elements (TEs) are virtually ubiquitous components of genomes, yet they often impose significant fitness consequences on their hosts. In addition to producing specific deleterious mutations by insertional inactivation, TEs also impose general fitness costs by inducing DNA damage and participating in ectopic recombination. These latter fitness costs are often assumed to be dosage-dependent, with stronger effects occurring in the presence of higher TE copy numbers. We test this assumption in Drosophila melanogaster by considering the relationship between the copy number of two active DNA transposons, P-element and hobo element, and the incidence of hybrid dysgenesis, a sterility syndrome associated with transposon activity in the germline. By harnessing a subset of the Drosophila Genetic Reference Panel (DGRP), a group of fully-sequenced D. melanogaster strains, we describe quantitative and structural variation in P-elements and hobo elements among wild-derived genomes and associate these factors with hybrid dysgenesis. We find that the incidence of hybrid dysgenesis is associated with both P-element and hobo element copy number in a dosage-dependent manner. However, the relationship is weak for both TEs, suggesting that dosage alone explains only a small part of TE-associated fitness costs.
Collapse
|
4
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Drosophila IRBP bZIP heterodimer binds P-element DNA and affects hybrid dysgenesis. Proc Natl Acad Sci U S A 2016; 113:13003-13008. [PMID: 27799520 DOI: 10.1073/pnas.1613508113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In Drosophila, P-element transposition causes mutagenesis and genome instability during hybrid dysgenesis. The P-element 31-bp terminal inverted repeats (TIRs) contain sequences essential for transposase cleavage and have been implicated in DNA repair via protein-DNA interactions with cellular proteins. The identity and function of these cellular proteins were unknown. Biochemical characterization of proteins that bind the TIRs identified a heterodimeric basic leucine zipper (bZIP) complex between an uncharacterized protein that we termed "Inverted Repeat Binding Protein (IRBP) 18" and its partner Xrp1. The reconstituted IRBP18/Xrp1 heterodimer binds sequence-specifically to its dsDNA-binding site within the P-element TIRs. Genetic analyses implicate both proteins as critical for repair of DNA breaks following transposase cleavage in vivo. These results identify a cellular protein complex that binds an active mobile element and plays a more general role in maintaining genome stability.
Collapse
|
6
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Yushkova E, Zainullin V. Interaction between gene repair and mobile elements-induced activity systems after low-dose irradiation. Int J Radiat Biol 2016; 92:485-92. [DOI: 10.1080/09553002.2016.1206221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Science Centre Ural Division of the Russian Academy of Science, Syktyvkar, Russia
| | - Vladimir Zainullin
- Institute of Biology of Komi Science Centre Ural Division of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
8
|
Majumdar S, Rio DC. P Transposable Elements in Drosophila and other Eukaryotic Organisms. Microbiol Spectr 2015; 3:MDNA3-0004-2014. [PMID: 26104714 PMCID: PMC4399808 DOI: 10.1128/microbiolspec.mdna3-0004-2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/20/2022] Open
Abstract
P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins.
Collapse
Affiliation(s)
| | - Donald C. Rio
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley, CA 94720-3204
| |
Collapse
|
9
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Marmignon A, Bischerour J, Silve A, Fojcik C, Dubois E, Arnaiz O, Kapusta A, Malinsky S, Bétermier M. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 2014; 10:e1004552. [PMID: 25166013 PMCID: PMC4148214 DOI: 10.1371/journal.pgen.1004552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR. DNA double-strand breaks (DSBs) are potential threats for chromosome stability, but they are usually repaired by two major pathways, homologous recombination or non-homologous end joining (NHEJ). DSBs can also be essential during physiological processes, such as the programmed removal of germline sequences that takes place in various eukaryotes, including ciliates, during somatic differentiation. We use the ciliate Paramecium tetraurelia as a unicellular model to study how DNA breakage and DSB repair are coordinated during programmed genome rearrangements. In this organism, assembly of the somatic genome involves the elimination of ∼25% of germline DNA, including the precise excision of thousands of short Internal Eliminated Sequences (IES) scattered along germline chromosomes. A domesticated piggyBac transposase, PiggyMac, is required for double-strand DNA cleavage at IES ends and IES excision sites are very precisely repaired by the NHEJ pathway. Here, we report that a specialized Ku heterodimer, specifically expressed during programmed genome rearrangements, is an essential partner of PiggyMac and activates DNA cleavage. We propose that incorporation of DSB repair proteins in a pre-cleavage complex constitutes a safe and efficient way for Paramecium to direct thousands of programmed DSBs to the NHEJ pathway and make sure that somatic chromosomes are assembled correctly.
Collapse
Affiliation(s)
- Antoine Marmignon
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Julien Bischerour
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aude Silve
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Clémentine Fojcik
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Emeline Dubois
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aurélie Kapusta
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Sophie Malinsky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
- * E-mail:
| |
Collapse
|
11
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
12
|
Gaivão I, Rodríguez R, Sierra LM. Use of the Comet Assay to Study DNA Repair in Drosophila melanogaster. GENOTOXICITY AND DNA REPAIR 2014. [DOI: 10.1007/978-1-4939-1068-7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Majumdar S, Singh A, Rio DC. The human THAP9 gene encodes an active P-element DNA transposase. Science 2013; 339:446-8. [PMID: 23349291 DOI: 10.1126/science.1231789] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.
Collapse
Affiliation(s)
- Sharmistha Majumdar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
14
|
Tamura T, Sone M, Iwatsubo T, Tagawa K, Wanker EE, Okazawa H. Ku70 alleviates neurodegeneration in Drosophila models of Huntington's disease. PLoS One 2011; 6:e27408. [PMID: 22096569 PMCID: PMC3210167 DOI: 10.1371/journal.pone.0027408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022] Open
Abstract
DNA damage accumulates in genome DNA during the long life of neurons, thus DNA damage repair is indispensable to keep normal functions of neurons. We previously reported that Ku70, a critical molecule for DNA double strand break (DSB) repair, is involved in the pathology of Huntington's disease (HD). Mutant huntingtin (Htt) impaired Ku70 function via direct interaction, and Ku70 supplementation recovered phenotypes of a mouse HD model. In this study, we generate multiple Drosophila HD models that express mutant huntingtin (Htt) in eye or motor neuron by different drivers and show various phenotypes. In such fly models, Ku70 co-expression recovers lifespan, locomotive activity and eye degeneration. In contrast, Ku70 reduction by heterozygous null mutation or siRNA-mediated knock down accelerates lifespan shortening and locomotion disability. These results collectively support that Ku70 is a critical mediator of the HD pathology and a candidate therapeutic target in HD.
Collapse
Affiliation(s)
- Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Sone
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erich E. Wanker
- Department of Neurogenetics, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
15
|
Hellsten U, Aspden JL, Rio DC, Rokhsar DS. A segmental genomic duplication generates a functional intron. Nat Commun 2011; 2:454. [PMID: 21878908 PMCID: PMC3265369 DOI: 10.1038/ncomms1461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
An intron is an extended genomic feature whose function requires multiple constrained positions—donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers—that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half-a-billion years ago. The appearance of a new intron that splits an exon without disrupting the corresponding peptide sequence is a rare event in vertebrate genomes. Hellsten et al. demonstrate that, under certain circumstances, a functional intron can be produced in a single step by segmental genomic duplication.
Collapse
Affiliation(s)
- Uffe Hellsten
- DOE Joint Genome Institute, Walnut Creek, California 94598, USA.
| | | | | | | |
Collapse
|
16
|
Mishra M, Sharma A, Negi MPS, Dwivedi UN, Chowdhuri DK. Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster. Mutat Res 2011; 722:44-51. [PMID: 21382505 DOI: 10.1016/j.mrgentox.2011.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/14/2011] [Accepted: 02/27/2011] [Indexed: 01/08/2023]
Abstract
Mutagen sensitive strains (mus) in Drosophila are known for their hypersensitivity to mutagens and environmental carcinogens. Accordingly, these mutants were grouped in pre- and post-replication repair pathways. However, studying mutants belonging to one particular repair pathway may not be adequate for examining chemical-induced genotoxicity when other repair pathways may neutralize its effect. To test whether both pre-and post-replication pathways are involved and effect of Cr(III)- and Cr(VI)-induced genotoxicity in absence or presence of others, we used double mutant approach in D. melanogaster. We observed DNA damage as evident by changes in Comet assay DNA migration in cells of larvae of Oregon R(+) and single mutants of pre- (mei-9, mus201 and mus210) and post- (mei-41, mus209 and mus309) replication repair pathways and also in double mutants of different combinations (pre-pre, pre-post and post-post replication repair) exposed to increasing concentrations of Cr(VI) (0.0, 5.0, 10.0 and 20.0 μg/ml) for 48 h. The damage was greater in pre-replication repair mutants after exposure to 5.0 μg/ml Cr(VI), while effects on Oregon R(+) and post replication repair mutants were insignificant. Post-replication repair mutants revealed significant DNA damage after exposure to 20.0 μg/ml Cr(VI). Further, double mutants generated in the above repair categories were examined for DNA damage following Cr(VI) exposure and a comparison of damage was studied between single and double mutants. Combinations of double mutants generated in the pre-pre replication repair pathways showed an indifferent interaction between the two mutants after Cr(VI) exposure while a synergistic interaction was evident in exposed post-post replication repair double mutants. Cr(III) (20.0 μg/ml) exposure to these strains did not induce any significant DNA damage in their cells. The study suggests that both pre- and post-replication pathways are affected in Drosophila by Cr(VI) leading to genotoxicity, which may have consequences for metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Manish Mishra
- Embryotoxicology Section, Indian Institute of Toxicology Research, Lucknow 226 001, India
| | | | | | | | | |
Collapse
|
17
|
Schön I, Martens K. Are ancient asexuals less burdened? Selfish DNA, transposons and reproductive mode. J NAT HIST 2010. [DOI: 10.1080/00222930110089148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Evidence based on studies of the mus309 mutant, deficient in DNA double-strand break repair, that meiotic crossing over in Drosophila melanogaster is a two-phase process. Genetica 2010; 138:1033-45. [PMID: 20803348 DOI: 10.1007/s10709-010-9489-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair and specifically in the choice between the different pathways of the repair. In a brood pattern analysis of mus309 and wild type females which either had or had not experienced a temperature shock, different parameters of meiotic crossing over including map distances and crossover interference in the X chromosome were measured. The results suggest that, like in other eukaryotes studied, the control of meiotic crossover formation also in D. melanogaster is a two-phase process. The first phase seems to be temperature shock sensitive, independent of the mus309 gene and coincidental with the premeiotic DNA synthesis, thus most likely representing the formation of DSBs. The second phase seems to be temperature shock tolerant, dependent on the mus309 gene, occurring during the meiotic prophase and most likely representing the choice made by the oocyte between the different pathways of the DSB repair. A hypothesis of the localization of chiasmata is also presented, combining the mechanisms of interference and the so-called centromere effect, and based on the balance between the SDSA and DSBR pathways of DSB repair.
Collapse
|
19
|
Portin P. Retraction: Effect of temperature shock treatment on crossing over in themus309mutant, deficient in DNA double-strand break repair, ofDrosophila melanogastersuggests a two-phase control of crossover formation and interference. Hereditas 2010. [DOI: 10.1111/j.1601-5223.2010.02180.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Portin P. The effect of the mus309 mutation, defective in DNA double-strand break repair, on crossing over in Drosophila melanogaster suggests a mechanism for the centromere effect of crossing over. Genetica 2009; 138:333-42. [PMID: 19882364 DOI: 10.1007/s10709-009-9422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 10/20/2009] [Indexed: 11/25/2022]
Abstract
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair. In a brood pattern analysis, it was observed that in mus309 mutant females, the frequency of single crossovers in the central cv-v interval of the X chromosome was reduced in young females but returned to the level of the wild type control as the females aged. In the proximal v-f interval, the frequency of single crossovers was increased during the entire experimental period. In particular, it was observed that the frequency of double crossovers, as well as the coefficient of coincidence first increased but then gradually decreased, finally reaching the level of the control flies, as the females aged. Map distances increased due to the mus309 mutation in both gene interval studies, but they did not change as the females aged, a result suggesting that the mus309 gene controls the distribution of DSBs to be repaired as crossovers instead of non-crossovers. The results suggest a mechanism for the centromere effect of crossing over in Drosophila, viz the fact the frequency of meiotic crossing over reduces with the age of the female, and that the reduction is more pronounced the closer the interval is to the proximal heterochromatin of the chromosome arm. According to the model suggested, the centromere effect is simply a matter of the balance between different pathways of the repair of the DSBs of DNA.
Collapse
Affiliation(s)
- Petter Portin
- Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
21
|
Portin P. The effect of the mus309 mutation, defective in DNA double-strand break repair, on crossing over in Drosophila melanogaster suggests a mechanism for interference. Hereditas 2009; 146:162-76. [PMID: 19765096 DOI: 10.1111/j.1601-5223.2009.02144.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair. In a brood pattern analysis, it was observed that in mus309 mutant females, the frequency of single crossovers in the central cv - v interval of the X chromosome was decreased in young females but returned to the level of the wild type control as the females aged. In the proximal v - f interval, the frequency of single crossovers was increased during the whole experimental period. In particular, it was observed that the frequency of double crossovers, as well as the coefficient of coincidence first increased but then gradually decreased, finally reaching the level of the control flies, as the females aged. Map distances increased due to the mus309 mutation in both gene interval studies, but they did not change as the females aged, a result suggesting that the mus309 gene controls the distribution of DSBs to be repaired as crossovers instead of non-crossovers. The results are consistent with the hypothesis that in general the DSBs are initially independently distributed on the chromosome but non-randomly repaired so that the distribution of crossovers in the mutant flies becomes uniform, but uneven in wild-type flies. The results are consistent with the counting number model of crossover interference, based on genetic distance. On the other hand, the data are not consistent with the reaction-diffusion model based on physical distance. Consequently, the view that crossover interference in Drosophila is tightly tied to genetic distance is supported.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
22
|
Removal of the bloom syndrome DNA helicase extends the utility of imprecise transposon excision for making null mutations in Drosophila. Genetics 2009; 183:1187-93. [PMID: 19687136 DOI: 10.1534/genetics.109.108472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are frequently used in Drosophila melanogaster for imprecise excision screens to delete genes of interest. However, these screens are highly variable in the number and size of deletions that are recovered. Here, we show that conducting excision screens in mus309 mutant flies that lack DmBlm, the Drosophila ortholog of the Bloom syndrome protein, increases the percentage and overall size of flanking deletions recovered after excision of either P or Minos elements.
Collapse
|
23
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Trowbridge K, McKim K, Brill SJ, Sekelsky J. Synthetic lethality of Drosophila in the absence of the MUS81 endonuclease and the DmBlm helicase is associated with elevated apoptosis. Genetics 2007; 176:1993-2001. [PMID: 17603121 PMCID: PMC1950608 DOI: 10.1534/genetics.106.070060] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mus81-Mms4 (Mus81-Eme1 in some species) is a heterodimeric DNA structure-specific endonuclease that has been implicated in meiotic recombination and processing of damaged replication forks in fungi. We generated and characterized mutations in Drosophila melanogaster mus81 and mms4. Unlike the case in fungi, we did not find any role for MUS81-MMS4 in meiotic crossing over. A possible role for this endonuclease in repairing double-strand breaks that arise during DNA replication is suggested by the finding that mus81 and mms4 mutants are hypersensitive to camptothecin; however, these mutants are not hypersensitive to other agents that generate lesions that slow or block DNA replication. In fungi, mus81, mms4, and eme1 mutations are synthetically lethal with mutations in genes encoding RecQ helicase homologs. Similarly, we found that mutations in Drosophila mus81 and mms4 are synthetically lethal with null mutations in mus309, which encodes the ortholog of the Bloom Syndrome helicase. Synthetic lethality is associated with high levels of apoptosis in proliferating tissues. Lethality and elevated apoptosis were partially suppressed by a mutation in spn-A, which encodes the ortholog of the strand invasion protein Rad51. These findings provide insights into the causes of synthetic lethality.
Collapse
Affiliation(s)
- Kirsten Trowbridge
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
25
|
McVey M, Andersen SL, Broze Y, Sekelsky J. Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 2007; 176:1979-92. [PMID: 17507683 PMCID: PMC1950607 DOI: 10.1534/genetics.106.070052] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bloom Syndrome, a rare human disorder characterized by genomic instability and predisposition to cancer, is caused by mutation of BLM, which encodes a RecQ-family DNA helicase. The Drosophila melanogaster ortholog of BLM, DmBlm, is encoded by mus309. Mutations in mus309 cause hypersensitivity to DNA-damaging agents, female sterility, and defects in repairing double-strand breaks (DSBs). To better understand these phenotypes, we isolated novel mus309 alleles. Mutations that delete the N terminus of DmBlm, but not the helicase domain, have DSB repair defects as severe as those caused by null mutations. We found that female sterility is due to a requirement for DmBlm in early embryonic cell cycles; embryos lacking maternally derived DmBlm have anaphase bridges and other mitotic defects. These defects were less severe for the N-terminal deletion alleles, so we used one of these mutations to assay meiotic recombination. Crossovers were decreased to about half the normal rate, and the remaining crossovers were evenly distributed along the chromosome. We also found that spontaneous mitotic crossovers are increased by several orders of magnitude in mus309 mutants. These results demonstrate that DmBlm functions in multiple cellular contexts to promote genome stability.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
26
|
Johnson-Schlitz DM, Flores C, Engels WR. Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 2007; 3:e50. [PMID: 17432935 PMCID: PMC1851981 DOI: 10.1371/journal.pgen.0030050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/20/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of double-strand break (DSB) repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.
Collapse
Affiliation(s)
- Dena M Johnson-Schlitz
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carlos Flores
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William R Engels
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Weinert BT, Rio DC. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res 2007; 35:1367-76. [PMID: 17272294 PMCID: PMC1849897 DOI: 10.1093/nar/gkl831] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic analysis of the Drosophila Bloom's syndrome helicase homolog (mus309/DmBLM) indicates that DmBLM is required for the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination. Here we report the first biochemical study of DmBLM. Recombinant, epitope-tagged DmBLM was expressed in Drosophila cell culture and highly purified protein was prepared from nuclear extracts. Purified DmBLM exists exclusively as a high molecular weight (∼1.17 MDa) species, is a DNA-dependent ATPase, has 3′→5′ DNA helicase activity, prefers forked substrate DNAs and anneals complementary DNAs. High-affinity DNA binding is ATP-dependent and low-affinity ATP-independent interactions contribute to forked substrate DNA binding and drive strand annealing. DmBLM combines DNA strand displacement with DNA strand annealing to catalyze the displacement of one DNA strand while annealing a second complementary DNA strand.
Collapse
Affiliation(s)
| | - Donald C. Rio
- To whom correspondence should be addressed. Tel: +1 510 642 1071; Fax: +1 510 642 6062;
| |
Collapse
|
28
|
Emelyanov A, Gao Y, Naqvi NI, Parinov S. Trans-kingdom transposition of the maize dissociation element. Genetics 2006; 174:1095-104. [PMID: 16951067 PMCID: PMC1667081 DOI: 10.1534/genetics.106.061184] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/03/2006] [Indexed: 12/19/2022] Open
Abstract
Transposons are very valuable tools for genetic manipulation. However, the number of transposable elements that have been suitably adapted for experimental use is insufficient and the spectrum of heterologous hosts in which they have been deployed is restricted. To date, only transposons from animal hosts have been utilized in heterologous animal species and transposons of plant origin have been used in plant genetics. There has been no experimental evidence that any of the known elements could transpose in hosts belonging to both kingdoms. Here we demonstrate that the maize Dissociation (Ds) element is capable of effective Activator (Ac) transposase-mediated transposition in the zebrafish Danio rerio, yielding remarkable germline transmission rates. In addition, mammalian cells were also found to be conducive to Ds transposition. Furthermore, we demonstrate that nuclear localization of Ac transposase is essential for genomic Ds transposition. Our results support the hypothesis that Ac/Ds elements do not rely on host-specific factors for transposition and that host factors involved in their mobility mechanism are widely conserved. Finally, even in vertebrate cells, the Ac/Ds system displays accurate transposition, large-fragment carrying capacity, high transposition frequencies, efficient germline transmission, and reporter gene expression, all of which are advantageous for various genetic applications and animal biotechnology.
Collapse
Affiliation(s)
- Alexander Emelyanov
- Temasek Life Sciences Laboratory, The National University of Singapore, 117604 Singapore, Singapore
| | | | | | | |
Collapse
|
29
|
Hawley RS, Gilliland WD. Sometimes the result is not the answer: the truths and the lies that come from using the complementation test. Genetics 2006; 174:5-15. [PMID: 16988106 PMCID: PMC1569807 DOI: 10.1534/genetics.106.064550] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is standard genetic practice to determine whether or not two independently obtained mutants define the same or different genes by performing the complementation test. While the complementation test is highly effective and accurate in most cases, there are a number of instances in which the complementation test provides misleading answers, either as a result of the failure of two mutations that are located in different genes to complement each other or by exhibiting complementation between two mutations that lie within the same gene. We are primarily concerned here with those cases in which two mutations lie in different genes, but nonetheless fail to complement each other. This phenomenon is often referred to as second-site noncomplementation (SSNC). The discovery of SSNC led to a large number of screens designed to search for genes that encode interacting proteins. However, screens for dominant enhancer mutations of semidominant alleles of a given gene have proved far more effective at identifying interacting genes whose products interact physically or functionally with the initial gene of interest than have SSNC-based screens.
Collapse
Affiliation(s)
- R Scott Hawley
- Stowers Institute for Medical Research, Kansas, City, Missouri 64110, USA.
| | | |
Collapse
|
30
|
Alonso-González L, Domínguez A, Albornoz J. Direct determination of the influence of extreme temperature on transposition and structural mutation rates of Drosophila melanogaster mobile elements. Genetica 2006; 128:11-9. [PMID: 17028936 DOI: 10.1007/s10709-005-2480-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
Two sets of mutation accumulation lines, one reared at 28 degrees C and the other at 24 degrees C, were compared for their transposition and rearrangement rates of eleven transposable element families. The changes affecting mobile elements were analysed by the Southern technique and in situ hybridization. No differences were found between treated and control lines. The role of the host genotype in transposition control and the significance of structural mutations in transposable element dynamics are discussed.
Collapse
Affiliation(s)
- Lucía Alonso-González
- Area de Genética. Departamento de Biología Funcional, Universidad de Oviedo, 33071, Oviedo, Spain
| | | | | |
Collapse
|
31
|
Plank JL, Wu J, Hsieh TS. Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proc Natl Acad Sci U S A 2006; 103:11118-23. [PMID: 16849422 PMCID: PMC1544052 DOI: 10.1073/pnas.0604873103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been suspected that a double Holliday junction (dHJ) could be resolved by a topoisomerase partnered with a helicase by convergent branch migration of the HJs. Genetic analysis of yeast TOP3 and SGS1 has lent considerable evidence to the notion that the protein products of these genes are involved in just such a process, although biochemical analysis of the metabolism of a dHJ has been hindered by the lack of a substrate that adequately replicates the endogenous structure. We have synthesized a dHJ substrate that recapitulates many of the features of an endogenous dHJ and represents a much earlier intermediate in the resolution pathway. Here, we show that Drosophila topoisomerase IIIalpha (Topo IIIalpha) and Blm (a homolog of Sgs1) are capable of resolving this substrate to non-cross-over products and that this activity is stimulated by replication protein A (RPA). We investigated the ability of other Drosophila topoisomerases to perform this reaction in concert with Blm and RPA and discovered that this resolution activity is unique to Topo IIIalpha. Examination of the mechanism of resolution reveals that Topo IIIalpha, Blm, and RPA resolve this substrate by convergent migration of the two HJs toward each other, collapsing the dHJ. This mechanism stands in contrast to classic resolvase activities that use a structure-specific endonuclease to cleave the HJs.
Collapse
Affiliation(s)
- Jody L. Plank
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Jianhong Wu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Tao-shih Hsieh
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- *To whom correspondence should be addressed at:
Department of Biochemistry, Duke University Medical Center, DUMC Box 3711, Durham, NC 27710. E-mail:
| |
Collapse
|
32
|
Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006; 172:2391-403. [PMID: 16452139 PMCID: PMC1456366 DOI: 10.1534/genetics.105.052829] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This report describes high-frequency germline gene targeting at two genomic loci in Drosophila melanogaster, y and ry. In the best case, nearly all induced parents produced mutant progeny; 25% of their offspring were new mutants and most of these were targeted gene replacements resulting from homologous recombination (HR) with a marked donor DNA. The procedure that generates these high frequencies relies on cleavage of the target by designed zinc-finger nucleases (ZFNs) and production of a linear donor in situ. Increased induction of ZFN expression led to higher frequencies of gene targeting, demonstrating the beneficial effect of activating the target. In the absence of a homologous donor DNA, ZFN cleavage led to the recovery of new mutants at three loci-y, ry and bw-through nonhomologous end joining (NHEJ) after cleavage. Because zinc fingers can be directed to a broad range of DNA sequences and targeting is very efficient, this approach promises to allow genetic manipulation of many different genes, even in cases where the mutant phenotype cannot be predicted.
Collapse
Affiliation(s)
- Kelly Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
33
|
Weinert BT, Min B, Rio DC. P element excision and repair by non-homologous end joining occurs in both G1 and G2 of the cell cycle. DNA Repair (Amst) 2005; 4:171-81. [PMID: 15590325 DOI: 10.1016/j.dnarep.2004.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
P element excision generates a DNA double-strand break at the transposon donor site. Genetic studies have demonstrated a strong bias toward repair of P element-induced DNA breaks by homologous recombination with the sister chromatid, suggesting that P element excision occurs after DNA replication, in G2 of the cell cycle. We developed methods to arrest Drosophila tissue culture cells and assay P element excision in either G1- or G2-arrested cells. Dacapo or tribbles transgene expression arrests cells in either G2 or G2, respectively. RNA-mediated gene interference (RNAi) directed against cyclin E or cyclin A arrests cells in G1 or G2, respectively. P element excision occurs efficiently in both G1- and G2-arrested cells, suggesting that cell cycle regulation of P element transposase does not occur in our somatic cell system. DNA double-strand break repair occurs by two predominant mechanisms: homologous recombination (HR) and non-homologous end joining (NHEJ). HR is thought to be restricted to the post-replicative, G2, phase of the cell cycle, while NHEJ may occur throughout the cell cycle. Our results indicate that NHEJ repair of an extrachromasomal plasmid substrate occurs at least as efficiently in G2-arrested cells as in asynchronous cells or in G1-arrested cells.
Collapse
Affiliation(s)
- Brian T Weinert
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, 16 Barker Hall, CA 94720-3204, USA
| | | | | |
Collapse
|
34
|
Melnikova L, Biessmann H, Georgiev P. The Ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 2005; 170:221-35. [PMID: 15781709 PMCID: PMC1449706 DOI: 10.1534/genetics.104.034538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromosome ends in Drosophila melanogaster can be elongated either by terminal attachment of the telomere-specific retrotransposons HeT-A and TART or by terminal gene conversion. Here we show that a decrease in Ku70 or Ku80 gene dosage causes a sharp increase in the frequency of HeT-A and TART attachments to a broken chromosome end and in terminal DNA elongation by gene conversion. Loss of Ku80 has more pronounced effects than loss of Ku70. However, lower Ku70 concentration reduces the stability of terminally deficient chromosomes. Our results suggest a role of the end-binding Ku complex in the accessibility and length regulation of Drosophila telomeres.
Collapse
|
35
|
Weitzman MD, Carson CT, Schwartz RA, Lilley CE. Interactions of viruses with the cellular DNA repair machinery. DNA Repair (Amst) 2005; 3:1165-73. [PMID: 15279805 DOI: 10.1016/j.dnarep.2004.03.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
36
|
McVey M, Larocque JR, Adams MD, Sekelsky JJ. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc Natl Acad Sci U S A 2004; 101:15694-9. [PMID: 15501916 PMCID: PMC524851 DOI: 10.1073/pnas.0406157101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bloom syndrome is a rare disorder associated with cancer predisposition and genomic instability and is caused by loss of the RecQ helicase BLM. The Drosophila ortholog of BLM (DmBlm) is required for accurate repair of DNA double-strand gaps by homologous recombination. Repair products from DmBlm mutants have shorter repair synthesis tract lengths compared to wild type and are frequently associated with deletions flanking the break site. To determine the mechanisms responsible for deletion formation in the absence of DmBlm, we characterized repair after excision of the P[w(a)] element in various genetic backgrounds. Flies lacking DmRad51 do not have an elevated deletion frequency. Moreover, loss of DmRad51 suppresses deletion formation in DmBlm mutants. These data support a model in which DmBlm acts downstream of strand invasion to unwind a D-loop intermediate to free the newly synthesized strand. In the absence of DmBlm, alternative pathways of D-loop disassembly result in short repair synthesis tracts or flanking deletions. This model explains how RecQ helicases can promote homologous recombination while preventing illegitimate recombination.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
37
|
Larsson J, Svensson MJ, Stenberg P, Mäkitalo M. Painting of fourth in genus Drosophila suggests autosome-specific gene regulation. Proc Natl Acad Sci U S A 2004; 101:9728-33. [PMID: 15210994 PMCID: PMC470743 DOI: 10.1073/pnas.0400978101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Painting of fourth (POF) is a chromosome-specific protein in Drosophila and represents the first example of an autosome-specific protein. POF binds to chromosome 4 in Drosophila melanogaster, initiating at the proximal region, followed by a spreading dependent on chromosome 4-specific sequences or structures. Chromosome-specific gene regulation is known thus far only as a mechanism to equalize the transcriptional activity of the single male X chromosome with that of the two female X chromosomes. In Drosophila, a complex including the male-specific lethal proteins, "paints" the male X chromosome, mediating its hypertranscription, explained to some extent by the acetylation of lysine 16 on histone H4. Here, we show that Pof is essential for viability in both sexes and for female fertility. POF binding to an autosome, the F element, is conserved in genus Drosophila, indicating functional conservation of the autosome specificity. In three of nine studied species, POF binds to the male X chromosome. When bound to the male X, it also colocalizes with the dosage compensation protein male-specific lethal 3, suggesting a relationship to dosage compensation. The chromosome specificity is determined at the species level and not by the amino acid sequence. We argue that POF is involved in a chromosome-specific regulatory function.
Collapse
Affiliation(s)
- Jan Larsson
- Umeå Centrum för Molekylär Patogenes, Umeå University, SE-901 87 Umea, Sweden.
| | | | | | | |
Collapse
|
38
|
Min B, Weinert BT, Rio DC. Interplay between Drosophila Bloom's syndrome helicase and Ku autoantigen during nonhomologous end joining repair of P element-induced DNA breaks. Proc Natl Acad Sci U S A 2004; 101:8906-11. [PMID: 15184650 PMCID: PMC428445 DOI: 10.1073/pnas.0403000101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P transposable elements in Drosophila are mobilized via a cut-and-paste mechanism. The broken DNA ends generated during transposition can be repaired via the homology-directed synthesis-dependent strand annealing or by nonhomologous end joining (NHEJ). Genetic studies have demonstrated an interaction between the gene (mus309, for mutagen-sensitive) encoding the Drosophila Bloom's syndrome helicase homolog (DmBLM) and the Ku70 gene, which is involved in NHEJ. We have used RNA interference (RNAi) to knock down expression of DmBLM and one or both of the Drosophila Ku subunits, DmKu70 or DmKu80. Our results show that upon reduction of DmKu, an increase in small deletions (1-49 bp) and large deletions (>/=50 bp) flanking the site of P element-induced breaks is observed, and a reduction in large deletions at these sites is found upon reduction of DmBLM. Moreover, double RNAi of DmKu and DmBLM results in an increase in small deletions characteristic of the DmKu RNAi and also partially suppresses the reduction in repair efficiency observed with DmKu RNAi. These results suggest that there are DNA double-strand break recognition and/or processing events involving DmKu and DmBLM that, when eliminated by RNAi, lead to deletions. Finally, these results raise the possibility that, unlike the situation in mammals, where BLM appears to function exclusively in the homologous repair pathway, in Drosophila, DmBLM may be directly involved in, or at least influence the double-strand break recognition that leads to the NHEJ repair pathway.
Collapse
Affiliation(s)
- Bosun Min
- Department of Molecular and Cell Biology, Center for Integrative Genomics, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
39
|
Bachrati CZ, Hickson ID. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 2003; 374:577-606. [PMID: 12803543 PMCID: PMC1223634 DOI: 10.1042/bj20030491] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 06/10/2003] [Accepted: 06/12/2003] [Indexed: 02/04/2023]
Abstract
The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.
Collapse
Affiliation(s)
- Csanád Z Bachrati
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
40
|
Aström SU, Cline TW, Rine J. The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 2003; 163:931-7. [PMID: 12663533 PMCID: PMC1462486 DOI: 10.1093/genetics/163.3.931] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Five Drosophila melanogaster genes belong to the highly conserved sir2 family, which encodes NAD(+)-dependent protein deacetylases. Of these five, dsir2(+) (CG5216) is most similar to the Saccharomyces cerevisiae SIR2 gene, which has profound effects on chromatin structure and life span. Four independent Drosophila strains were found with P-element insertions near the dsir2 transcriptional start site as well as extraneous linked recessive lethal mutations. Imprecise excision of one of these P elements (PlacW07223) from a chromosome freed of extraneous lethal mutations produced dsir2(17), a null intragenic deletion allele that generates no DSIR2 protein. Contrary to expectations from the report by Rosenberg and Parkhurst on their P-mobilization allele dSir2(ex10), homozygosity for dsir2(17) had no apparent deleterious effects on viability, developmental rate, or sex ratio, and it fully complemented sir2(ex10). Moreover, through a genetic test, we ruled out the reported effect of dSir2(ex10) on Sex-lethal expression. We did observe a modest, strictly recessive suppression of white(m4) position-effect variegation and a shortening of life span in dsir2 homozygous mutants, suggesting that dsir2 has some functions in common with yeast SIR2.
Collapse
Affiliation(s)
- Stefan U Aström
- Department of Developmental Biology, Wennergren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
41
|
Adams MD, McVey M, Sekelsky JJ. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 2003; 299:265-7. [PMID: 12522255 DOI: 10.1126/science.1077198] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bloom syndrome, characterized by a predisposition to cancer, is caused by mutation of the RecQ DNA helicase gene BLM. The precise function of BLM remains unclear. Previous research suggested that Drosophila BLM functions in the repair of DNA double-strand breaks. Most double-strand breaks in flies are repaired by homologous recombination through the synthesis-dependent strand-annealing pathway. Here, we demonstrate that Drosophila BLM mutants are severely impaired in their ability to carry out repair DNA synthesis during synthesis-dependent strand annealing. Consequently, repair in the mutants is completed by error-prone pathways that create large deletions. These results suggest a model in which BLM maintains genomic stability by promoting efficient repair DNA synthesis and thereby prevents double-strand break repair by less precise pathways.
Collapse
Affiliation(s)
- Melissa D Adams
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
42
|
Atkinson PW, James AA. Germline transformants spreading out to many insect species. ADVANCES IN GENETICS 2002; 47:49-86. [PMID: 12000097 DOI: 10.1016/s0065-2660(02)47002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The past 5 years have witnessed significant advances in our ability to introduce genes into the genomes of insects of medical and agricultural importance. A number of transposable elements now exist that are proving to be sufficiently robust to allow genetic transformation of species within three orders of insects. In particular all of these transposable elements can be used genetically to transform mosquitoes. These developments, together with the use of suitable genes as genetic markers, have enabled several genes and promoters to be transferred between insect species and their effects on the phenotype of the transgenic insect determined. Within a very short period of time, insights into the function of insect promoters in homologous and heterologous insect species are being gained. Furthermore, strategies aimed at ameliorating the harmful effects of pest insects, such as their ability to vector human pathogens, are now being tested in the pest insects themselves. We review the progress that has been made in the development of transgenic technology in pest insect species and conclude that the repertoire of transposable element-based genetic tools, long available to Drosophila geneticists, can now be applied to other insect species. In addition, it is likely that these developments will lead to the generation of pest insects that display a significantly reduced ability to transmit pathogens in the near future.
Collapse
Affiliation(s)
- Peter W Atkinson
- Department of Entomology, University of California, Riverside 92521, USA
| | | |
Collapse
|
43
|
Beall EL, Mahoney MB, Rio DC. Identification and Analysis of a Hyperactive Mutant Form of Drosophila P-Element Transposase. Genetics 2002; 162:217-27. [PMID: 12242235 PMCID: PMC1462248 DOI: 10.1093/genetics/162.1.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Transposition in many organisms is regulated to control the frequency of DNA damage caused by the DNA breakage and joining reactions. However, genetic studies in prokaryotic systems have led to the isolation of mutant transposase proteins with higher or novel activities compared to those of the wild-type protein. In the course of our study of the effects of mutating potential ATM-family DNA damage checkpoint protein kinase sites in the Drosophila P-element transposase protein, we found one mutation, S129A, that resulted in an elevated level of transposase activity using in vivo recombination assays, including P-element-mediated germline transformation. In vitro assays for P-element transposase activity indicate that the S129A mutant exhibits elevated donor DNA cleavage activity when compared to the wild-type protein, whereas the strand-transfer activity is similar to that of wild type. This difference may reflect the nature of the in vitro assays and that normally in vivo the two reactions may proceed in concert. The P-element transposase protein contains 10 potential consensus phosphorylation sites for the ATM family of PI3-related protein kinases. Of these 10 sites, 8 affect transposase activity either positively or negatively when substituted individually with alanine and tested in vivo. A mutant transposase protein that contains all eight N-terminal serine and threonine residues substituted with alanine is inactive and can be restored to full activity by substitution of wild-type amino acids back at only 3 of the 8 positions. These data suggest that the activity of P-element transposase may be regulated by phosphorylation and demonstrate that one mutation, S129A, results in hyperactive transposition.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
44
|
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002; 161:1169-75. [PMID: 12136019 PMCID: PMC1462166 DOI: 10.1093/genetics/161.3.1169] [Citation(s) in RCA: 560] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) are hybrids between a nonspecific DNA-cleavage domain and a DNA-binding domain composed of Cys(2)His(2) zinc fingers. Because zinc fingers can be manipulated to recognize a broad range of sequences, these enzymes have the potential to direct cleavage to arbitrarily chosen targets. We have tested this idea by designing a pair of ZFNs that recognize a unique site in the yellow (y) gene of Drosophila. When these nucleases were expressed in developing larvae, they led to somatic mutations specifically in the y gene. These somatic mosaics were observed in approximately one-half of the males expressing both nucleases. Germline y mutations were recovered from 5.7% of males, but from none of the females, tested. DNA sequences were determined and showed that all of the mutations were small deletions and/or insertions located precisely at the designed target. These are exactly the types of alterations expected from nonhomologous end joining (NHEJ) following double-strand cleavage of the target. This approach promises to permit generation of directed mutations in many types of cells and organisms.
Collapse
Affiliation(s)
- Marina Bibikova
- Department of Biochemistry, University of Utah School of Medicine, Medical Research and Education Building, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
45
|
Pospiech H, Rytkönen AK, Syväoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001; 29:3277-88. [PMID: 11470886 PMCID: PMC55831 DOI: 10.1093/nar/29.15.3277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5' or 3' overhangs was stimulated by 20-53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of alpha-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase alpha were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases beta and epsilon did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.
Collapse
Affiliation(s)
- H Pospiech
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | |
Collapse
|
46
|
Feschotte C, Wessler SR. Treasures in the attic: rolling circle transposons discovered in eukaryotic genomes. Proc Natl Acad Sci U S A 2001; 98:8923-4. [PMID: 11481459 PMCID: PMC55346 DOI: 10.1073/pnas.171326198] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C Feschotte
- Departments of Botany and Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
47
|
Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001; 20:3272-81. [PMID: 11406603 PMCID: PMC150207 DOI: 10.1093/emboj/20.12.3272] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Early after infection, the retroviral RNA genome is reverse transcribed to generate a linear cDNA copy, then that copy is integrated into a chromosome of the host cell. We report that unintegrated viral cDNA is a substrate for the host cell non-homologous DNA end joining (NHEJ) pathway, which normally repairs cellular double-strand breaks by end ligation. NHEJ activity was found to be required for an end-ligation reaction that circularizes a portion of the unintegrated viral cDNA in infected cells. Consistent with this, the NHEJ proteins Ku70 and Ku80 were found to be bound to purified retroviral replication intermediates. Cells defective in NHEJ are known to undergo apoptosis in response to retroviral infection, a response that we show requires reverse transcription to form the cDNA genome but not subsequent integration. We propose that the double-strand ends present in unintegrated cDNA promote apoptosis, as is known to be the case for chromosomal double-strand breaks, and cDNA circularization removes the pro-apoptotic signal.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Lieber
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| | - Sandra L. Martin
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| | - Frederic D. Bushman
- Infectious Disease Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037,
Department of Pathology, Norris Cancer Center, University of Southern California, Los Angeles, CA and University of Colorado School of Medicine, 4200 E. Ninth Avenue, Denver, CO, USA Corresponding author e-mail:
| |
Collapse
|
48
|
Eeken JC, Romeijn RJ, de Jong AW, Pastink A, Lohman PH. Isolation and genetic characterisation of the Drosophila homologue of (SCE)REV3, encoding the catalytic subunit of DNA polymerase zeta. Mutat Res 2001; 485:237-53. [PMID: 11267835 DOI: 10.1016/s0921-8777(01)00062-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Drosophila, about 30 mutants are known that show hypersensitivity to the methylating agent methyl methane sulfonate (MMS). Addition of this agent to the medium results in an increased larval mortality of the mutants. Using a P-insertion mutagenesis screen, three MMS-sensitive mutants on chromosome II were isolated. One of these is allelic to the known EMS-induced mus205 (mutagen sensitive) mutant. In the newly isolated mutant, a P-element is detected in region 43E by in situ hybridisation. The localisation of mus205 to this region was confirmed by deficiency mapping. The gene was cloned and shows strong homology to the Saccharomyces cerevisiae REV3 gene. The REV3 gene encodes the catalytic subunit of DNA polymerase zeta, involved in translesion synthesis. The P-element is inserted in the first exon of the mus205 gene resulting in an aberrant mRNA, encoding a putative truncated protein containing only the first 13 of the 2130 aa native Drosophila protein. The mus205 mutant is hypersensitive to alkylating agents and UV, but not to ionising radiation. In contrast to reported data, in germ cells, the mutant has no effect on mutability by X-rays, NQO and alkylating agents. In somatic cells, the mutant shows no effect on MMS-induced mutations and recombinations. This phenotype of the Drosophila mus205 mutant is strikingly different from the phenotype of the yeast rev3 mutant, which is hypomutable after UV, X-rays, NQO and alkylating agents.
Collapse
Affiliation(s)
- J C Eeken
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University Medical Center, P.O. Box 9503, 2300 RF, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Kusano K, Johnson-Schlitz DM, Engels WR. Sterility of Drosophila with mutations in the Bloom syndrome gene--complementation by Ku70. Science 2001; 291:2600-2. [PMID: 11283371 DOI: 10.1126/science.291.5513.2600] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Drosophila Dmblm locus is a homolog of the human Bloom syndrome gene, which encodes a helicase of the RECQ family. We show that Dmblm is identical to mus309, a locus originally identified in a mutagen-sensitivity screen. One mus309 allele, which carries a stop codon between two of the helicase motifs, causes partial male sterility and complete female sterility. Mutant males produce an excess of XY sperm and nullo sperm, consistent with a high frequency of nondisjunction and/or chromosome loss. These phenotypes of mus309 suggest that Dmblm functions in DNA double-strand break repair. The mutant Dmblm phenotypes were partially rescued by an extra copy of the DNA repair gene Ku70, indicating that the two genes functionally interact in vivo.
Collapse
Affiliation(s)
- K Kusano
- Laboratory of Genetics, University of Wisconsin- Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Ring BC, Bass HW, Garza D. Construction and transposition of a 100-kilobase extended P element in Drosophila. Genome Res 2000; 10:1605-16. [PMID: 11042158 PMCID: PMC310958 DOI: 10.1101/gr.151700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have used P element deletion derivatives at defined locations in the Drosophila genome to construct a 100-kb extended P element more than twice the size of any previously available. We demonstrate that this prototypical extended P element is capable of transposition to new sites in the genome. The structural and functional integrity of a transposed extended P element was confirmed using molecular, genetic, and cytogenetic criteria. This is the first method shown to be capable of producing large, unlinked transpositional duplications in Drosophila. The ability to produce functional transposable elements from half-elements is novel and has many potential applications for the functional analysis of complex genomes.
Collapse
Affiliation(s)
- B C Ring
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4370, USA
| | | | | |
Collapse
|