1
|
Tian K, Wang R, Huang J, Wang H, Ji X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep 2023; 42:112941. [PMID: 37556328 DOI: 10.1016/j.celrep.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
RNA polymerase III (Pol III) plays a vital role in transcription and as a viral-DNA sensor, but how it is assembled and distributed within cells remains poorly understood. Here, we show that Pol III is assembled with chaperones in the cytoplasm and forms transcription-dependent protein clusters upon transport into the nucleus. The largest subunit (RPC1) depletion through an auxin-inducible degron leads to rapid degradation and disassembly of Pol III complex in the nucleus and cytoplasm, respectively. This generates a pool of partially assembled Pol III intermediates, which can be rapidly mobilized into the nucleus upon the restoration of RPC1. Our study highlights the critical role of subcellular localization in determining Pol III's fate and provides insight into the dynamic regulation of nuclear Pol III levels and the origin of cytoplasmic Pol III complexes involved in mediating viral immunity.
Collapse
Affiliation(s)
- Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Arimbasseri GA. Interactions between RNAP III transcription machinery and tRNA processing factors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:354-360. [PMID: 29428193 DOI: 10.1016/j.bbagrm.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Eukaryotes have at least three nuclear RNA polymerases to carry out transcription. While RNA polymerases I and II are responsible for ribosomal RNA transcription and messenger RNA transcription, respectively, RNA Polymerase III transcribes approximately up to 300 nt long noncoding RNAs, including tRNA. For all three RNAPs, the nascent transcripts generated undergo extensive post-transcriptional processing. Transcription of mRNAs by RNAP II and their processing are coupled with the aid of the C-terminal domain of the RNAP II. RNAP I transcription and the processing of its transcripts are co-localized to the nucleolus and to some extent, rRNA processing occurs co-transcriptionally. Here, I review the current evidence for the interaction between tRNA processing factors and RNA polymerase III. These interactions include the moonlighting functions of tRNA processing factors in RNAP III transcription and the indirect effect of tRNA transcription levels on tRNA modification machinery.
Collapse
Affiliation(s)
- G Aneeshkumar Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
3
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
4
|
Serruya R, Orlovetskie N, Reiner R, Dehtiar-Zilber Y, Wesolowski D, Altman S, Jarrous N. Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III. Nucleic Acids Res 2015; 43:5442-50. [PMID: 25953854 PMCID: PMC4477669 DOI: 10.1093/nar/gkv447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022] Open
Abstract
Human RNase P is implicated in transcription of small non-coding RNA genes by RNA polymerase III (Pol III), but the precise role of this ribonucleoprotein therein remains unknown. We here show that targeted destruction of HeLa nuclear RNase P inhibits transcription of 5S rRNA genes in whole cell extracts, if this precedes the stage of initiation complex formation. Biochemical purification analyses further reveal that this ribonucleoprotein is recruited to 5S rRNA genes as a part of proficient initiation complexes and the activity persists at reinitiation. Knockdown of RNase P abolishes the assembly of initiation complexes by preventing the formation of the initiation sub-complex of Pol III. Our results demonstrate that the structural intactness, but not the endoribonucleolytic activity per se, of RNase P is critical for the function of Pol III in cells and in extracts.
Collapse
Affiliation(s)
- Raphael Serruya
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Natalie Orlovetskie
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yana Dehtiar-Zilber
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Donna Wesolowski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
6
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
7
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
8
|
Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, Roeder RG, Besser D, Teichmann M. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci U S A 2010; 107:4176-81. [PMID: 20154270 PMCID: PMC2840155 DOI: 10.1073/pnas.0914980107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription in eukaryotic nuclei is carried out by DNA-dependent RNA polymerases I, II, and III. Human RNA polymerase III (Pol III) transcribes small untranslated RNAs that include tRNAs, 5S RNA, U6 RNA, and some microRNAs. Increased Pol III transcription has been reported to accompany or cause cell transformation. Here we describe a Pol III subunit (RPC32beta) that led to the demonstration of two human Pol III isoforms (Pol IIIalpha and Pol IIIbeta). RPC32beta-containing Pol IIIbeta is ubiquitously expressed and essential for growth of human cells. RPC32alpha-containing Pol IIIalpha is dispensable for cell survival, with expression being restricted to undifferentiated ES cells and to tumor cells. In this regard, and most importantly, suppression of RPC32alpha expression impedes anchorage-independent growth of HeLa cells, whereas ectopic expression of RPC32alpha in IMR90 fibroblasts enhances cell transformation and dramatically changes the expression of several tumor-related mRNAs and that of a subset of Pol III RNAs. These results identify a human Pol III isoform and isoform-specific functions in the regulation of cell growth and transformation.
Collapse
Affiliation(s)
- Valérie Haurie
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Stéphanie Durrieu-Gaillard
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Daniel Da Silva
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Christophe Rey
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| | - Martina Prochazkova
- Institut Européen de Chimie et Biologie/Université de Bordeaux, INSERM E347, 33607 Pessac, France
| | - Robert G. Roeder
- The Rockefeller University, Laboratory of Biochemistry and Molecular Biology, New York, NY 10021
| | - Daniel Besser
- Max Delbrück Center, Department of Cancer Research, Laboratory for Signaling Mechanisms in Embryonic Stem Cells, D-13125 Berlin, Germany
| | - Martin Teichmann
- Institut Européen de Chimie et Biologie/Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, 33607 Pessac, France
| |
Collapse
|
9
|
Abstract
RNA transcription by all the three RNA polymerases (RNAPs) is tightly controlled, and loss of regulation can lead to, for example, cellular transformation and cancer. While most transcription factors act specifically with one polymerase, a small number have been shown to affect more than one polymerase to coordinate overall levels of transcription in cells. Here we show that TLS (translocated in liposarcoma), a protein originally identified as the product of a chromosomal translocation and which associates with both RNAP II and the spliceosome, also represses transcription by RNAP III. TLS was found to repress transcription from all three classes of RNAP III promoters in vitro and to associate with RNAP III genes in vivo, perhaps via a direct interaction with the pan-specific transcription factor TATA-binding protein (TBP). Depletion of TLS by small interfering RNA (siRNA) in HeLa cells resulted in increased steady-state levels of RNAP III transcripts as well as increased RNAP III and TBP occupancy at RNAP III-transcribed genes. Conversely, overexpression of TLS decreased accumulation of RNAP III transcripts. These unexpected findings indicate that TLS regulates both RNAPs II and III and supports the possibility that cross-regulation between RNA polymerases is important in maintaining normal cell growth.
Collapse
|
10
|
Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 2009; 19:740-5. [PMID: 19896367 DOI: 10.1016/j.sbi.2009.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/04/2009] [Accepted: 10/08/2009] [Indexed: 11/20/2022]
Abstract
Recent advances in elucidating the structure of yeast Pol I and III are based on a combination of X-ray crystal analysis, electron microscopy and homology modelling. They allow a better comparison of the three eukaryotic nuclear RNA polymerases, underscoring the most obvious difference existing between the three enzymes, which lies in the existence of additional Pol-I-specific and Pol-III-specific subunits. Their location on the cognate RNA polymerases is now fairly well known, suggesting precise hypotheses as to their function in transcription during initiation, elongation, termination and/or reinitiation. Unexpectedly, even though Pol I and III, but not Pol II, have an intrinsic RNA cleavage activity, it was found that TFIIS Pol II cleavage stimulation factor also played a general role in Pol III transcription.
Collapse
|
11
|
Bayfield MA, Maraia RJ. Precursor-product discrimination by La protein during tRNA metabolism. Nat Struct Mol Biol 2009; 16:430-7. [PMID: 19287396 PMCID: PMC2666094 DOI: 10.1038/nsmb.1573] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 02/09/2009] [Indexed: 11/09/2022]
Abstract
La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. Although the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA binding beta-sheet surface of the RNA-recognition motif (RRM1) is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. Here we show that La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 beta-surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding, whereas the processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA, but not for the UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair an RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA.
Collapse
Affiliation(s)
| | - Richard J. Maraia
- To whom correspondence should be directed at: 31 Center Drive, Building 31, Room 2A25, Bethesda, MD 20892-2426, Phone: 301-402-3567, Fax: 301-480-6863, E-mail:
| |
Collapse
|
12
|
French SL, Osheim YN, Schneider DA, Sikes ML, Fernandez CF, Copela LA, Misra VA, Nomura M, Wolin SL, Beyer AL. Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol Cell Biol 2008; 28:4576-87. [PMID: 18474615 PMCID: PMC2447126 DOI: 10.1128/mcb.00127-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/04/2008] [Accepted: 05/02/2008] [Indexed: 01/15/2023] Open
Abstract
5S rRNA genes from Saccharomyces cerevisiae were examined by Miller chromatin spreading, representing the first quantitative analysis of RNA polymerase III genes in situ by electron microscopy. These very short genes, approximately 132 nucleotides (nt), were engaged by one to three RNA polymerases. Analysis in different growth conditions and in strains with a fourfold range in gene copy number revealed regulation at two levels: number of active genes and polymerase loading per gene. Repressive growth conditions (presence of rapamycin or postexponential growth) led first to fewer active genes, followed by lower polymerase loading per active gene. The polymerase III elongation rate was estimated to be in the range of 60 to 75 nt/s, with a reinitiation interval of approximately 1.2 s. The yeast La protein, Lhp1, was associated with 5S genes. Its absence had no discernible effect on the amount or size of 5S RNA produced yet resulted in more polymerases per gene on average, consistent with a non-rate-limiting role for Lhp1 in a process such as polymerase release/recycling upon transcription termination.
Collapse
Affiliation(s)
- Sarah L French
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia 22908-0734, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
RNA polymerase (pol) III contains a dissociable subcomplex that is required for initiation, but not for elongation or termination of transcription. This subcomplex is composed of subunits RPC3, RPC6 and RPC7, and interacts with TFIIIB, a factor that is necessary and sufficient to support accurate pol III transcription in vitro. Direct binding of TFIIIB to RPC6 is believed to recruit pol III to its genetic templates. However, this has never been tested in vivo. Here we combine chromatin immunoprecipitation with RNA interference to demonstrate that the RPC3/6/7 subcomplex is required for pol III recruitment in mammalian cells. Specific knockdown of RPC6 by RNAi results in post-transcriptional depletion of the other components of the subcomplex, RPC3 and RPC7, without destabilizing core pol III subunits or TFIIIB. The resultant core enzyme is defective in associating with TFIIIB and target genes in vivo. Promoter occupancy by pol II is unaffected, despite sharing five subunits with the pol III core. These observations provide evidence for the validity in vivo of the model for pol III recruitment that was built on biochemical data.
Collapse
Affiliation(s)
- Niall S Kenneth
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
14
|
Di Pietro C, Ragusa M, Duro L, Guglielmino MR, Barbagallo D, Carnemolla A, Laganà A, Buffa P, Angelica R, Rinaldi A, Calafato MS, Milicia I, Caserta C, Giugno R, Pulvirenti A, Giunta V, Rapisarda A, Di Pietro V, Grillo A, Messina A, Ferro A, Grzeschik KH, Purrello M. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA Cell Biol 2007; 26:369-85. [PMID: 17570761 DOI: 10.1089/dna.2006.0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TBPL2 is the most recently discovered and less characterized member of the TATA box binding protein (TBP) family that also comprises TBP, TATA box binding protein-like 1 (TBPL1), and Drosophila melanogaster TBP related factor (TRF). In this paper we report our in silico and in vitro data on (i) the genomics of the TBPL2 gene in Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus tropicalis, and Takifugu rubripes; (ii) its evolution and phylogenetic relationship with TBP, TBPL1, and TRF; (iii) the structure of the TBPL2 proteins that belong to the recently identified group of the intrinsically unstructured proteins (IUPs); and (iv) TBPL2 expression in different organs and cell types of Homo sapiens and Rattus norvegicus. Similar to TBP, both the TBPL2 gene and protein are bimodular. The 3' region of the gene encoding the DNA binding domain (DBD) was well conserved during evolution. Its high homology to vertebrate TBP suggests that TBPL2 also should bind to the TATA box and interact with the proteins binding to TBP carboxy-terminal domain, such as the TBP associated factors (TAFs). As already demonstrated for TBP, TBPL2 amino-terminal segment is intrinsically unstructured and, even though variable among vertebrates, comprises a highly conserved motif not found in any other known protein. Absence of TBPL2 from the genome of invertebrates and plants demonstrates its specific origin within the subphylum of vertebrates. Our RT-PCR analysis of human and rat RNA shows that, similar to TBP, TBPL2 is ubiquitously synthesized even though at variable levels that are at least two orders of magnitude lower. Higher expression of TBPL2 in the gonads than in other organs suggests that it could perform important functions in gametogenesis. Our genomic and expression data should contribute to clarify why TBP has a general master role within the transcription apparatus (TA), whereas both TBPL1 and TBPL2 perform tissue-specific functions.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche-Unità di Biologia Genetica e BioInformatica, Università di Catania, Catania, Italy, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13:1097-101. [PMID: 17099701 DOI: 10.1038/nsmb1167] [Citation(s) in RCA: 919] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/23/2006] [Indexed: 12/16/2022]
Abstract
Prior work demonstrates that mammalian microRNA (miRNA or miR) expression requires RNA polymerase II (Pol II). However, the transcriptional requirements of many miRNAs remain untested. Our genomic analysis of miRNAs in the human chromosome 19 miRNA cluster (C19MC) revealed that they are interspersed among Alu repeats. Because Alu transcription occurs through RNA Pol III recruitment, and we found that Alu elements upstream of C19MC miRNAs retain sequences important for Pol III activity, we tested the promoter requirements of C19MC miRNAs. Chromatin immunoprecipitation and cell-free transcription assays showed that Pol III, but not Pol II, is associated with miRNA genomic sequence and sufficient for transcription. Moreover, the mature miRNA sequences of approximately 50 additional human miRNAs lie within Alu and other known repetitive elements. These findings extend the current view of miRNA origins and the transcriptional machinery driving their expression.
Collapse
Affiliation(s)
- Glen M Borchert
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
16
|
Schoenen F, Wirth B. The zinc finger protein ZNF297B interacts with BDP1, a subunit of TFIIIB. Biol Chem 2006; 387:277-84. [PMID: 16542149 DOI: 10.1515/bc.2006.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human gene BDP1, localized on chromosome 5q13 in close proximity to the spinal muscular atrophy determining gene SMN, encodes a large protein consisting of 2254 amino acids (aa). In the first third of the gene, the subunit of the RNA polymerase III (Pol III) transcription factor complex (TFIIIB alpha/beta) is encoded. To further characterize the function of BDP1, we carried out a yeast two-hybrid screen using various parts of BDP1. With the clone BDP1-(1-640) we identified a novel interaction partner, ZNF297B. The ZNF297B gene is localized on chromosome 9q24 and encodes a zinc finger protein of 467 aa possessing the typical structure of a transcription factor. The interaction found in yeast was confirmed by co-immunoprecipitation and refined to the N-terminal region of ZNF297B-(1-127) containing the BTB/POZ domain and the N-terminal end of BDP1-(1-299). The ZNF297B transcript is 5.7 kb in length and ubiquitously expressed, with highest levels found in muscles. Immunofluorescence staining revealed a speckled pattern in the nuclei of HEK293 cells. Due to the essential role of BDP1 in Pol III transcription, we propose that ZNF297B may also regulate these transcriptional pathways.
Collapse
Affiliation(s)
- Frank Schoenen
- Institute of Human Genetics, University of Cologne, D-50674 Cologne, Germany
| | | |
Collapse
|
17
|
Fairley JA, Kantidakis T, Kenneth NS, Intine RV, Maraia RJ, White RJ. Human La is found at RNA polymerase III-transcribed genes in vivo. Proc Natl Acad Sci U S A 2005; 102:18350-5. [PMID: 16344466 PMCID: PMC1317925 DOI: 10.1073/pnas.0506415102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Indexed: 11/18/2022] Open
Abstract
The human La autoantigen can bind to nascent RNA transcripts and has also been postulated to act as an RNA polymerase III (pol III) transcription initiation and termination factor. Here, we show by chromatin immunoprecipitation (ChIP) that La is associated with pol III-transcribed genes in vivo. In contrast, the Ro autoantigen, which can also bind pol III transcripts, is not found at these genes. The putative pol III transcription factors NF1 and TFIIA are also not detected at class III genes. Binding of La remains when transcription is repressed at mitosis and does not correlate with the presence of polymerase at the gene. However, gene occupancy depends on the phosphorylation status of La, with the less prevalent, unphosphorylated form being found selectively on pol III templates.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Saez-Vasquez J, Albert AC, Earley K, Pikaard CS. Purification and transcriptional analysis of RNA polymerase I holoenzymes from broccoli (Brassica oleracea) and frog (Xenopus laevis). Methods Enzymol 2004; 370:121-38. [PMID: 14712639 DOI: 10.1016/s0076-6879(03)70011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Affiliation(s)
- Julio Saez-Vasquez
- Biology Department, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
19
|
Hu P, Wu S, Sun Y, Yuan CC, Kobayashi R, Myers MP, Hernandez N. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol 2002; 22:8044-55. [PMID: 12391170 PMCID: PMC134740 DOI: 10.1128/mcb.22.22.8044-8055.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 08/05/2002] [Accepted: 08/15/2002] [Indexed: 11/20/2022] Open
Abstract
Unlike Saccharomyces cerevisiae RNA polymerase III, human RNA polymerase III has not been entirely characterized. Orthologues of the yeast RNA polymerase III subunits C128 and C37 remain unidentified, and for many of the other subunits, the available information is limited to database sequences with various degrees of similarity to the yeast subunits. We have purified an RNA polymerase III complex and identified its components. We found that two RNA polymerase III subunits, referred to as RPC8 and RPC9, displayed sequence similarity to the RNA polymerase II RPB7 and RPB4 subunits, respectively. RPC8 and RPC9 associated with each other, paralleling the association of the RNA polymerase II subunits, and were thus paralogues of RPB7 and RPB4. Furthermore, the complex contained a prominent 80-kDa polypeptide, which we called RPC5 and which corresponded to the human orthologue of the yeast C37 subunit despite limited sequence similarity. RPC5 associated with RPC53, the human orthologue of S. cerevisiae C53, paralleling the association of the S. cerevisiae C37 and C53 subunits, and was required for transcription from the type 2 VAI and type 3 human U6 promoters. Our results provide a characterization of human RNA polymerase III and show that the RPC5 subunit is essential for transcription.
Collapse
Affiliation(s)
- Ping Hu
- Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
21
|
Sabri N, Farrants AKO, Hellman U, Visa N. Evidence for a posttranscriptional role of a TFIIICalpha-like protein in Chironomus tentans. Mol Biol Cell 2002; 13:1765-77. [PMID: 12006668 PMCID: PMC111142 DOI: 10.1091/mbc.01-09-0436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the alpha subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-epsilon. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-alpha-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691, Sweden
| | | | | | | |
Collapse
|
22
|
Maraia RJ, Intine RV. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr 2002; 10:41-57. [PMID: 11868987 PMCID: PMC5977531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.
Collapse
Affiliation(s)
- Richard J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
23
|
Jenkins HL, Spencer CA. RNA polymerase II holoenzyme modifications accompany transcription reprogramming in herpes simplex virus type 1-infected cells. J Virol 2001; 75:9872-84. [PMID: 11559820 PMCID: PMC114559 DOI: 10.1128/jvi.75.20.9872-9884.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During lytic infection, herpes simplex virus type 1 (HSV-1) represses host transcription, recruits RNA polymerase II (RNAP II) to viral replication compartments, and alters the phosphorylation state of the RNAP II large subunit. Host transcription repression and RNAP II modifications require expression of viral immediate-early (IE) genes. Efficient modification of the RNAP II large subunit to the intermediately phosphorylated (IIi) form requires expression of ICP22 and the UL13 kinase. We have further investigated the mechanisms by which HSV-1 effects global changes in RNAP II transcription by analyzing the RNAP II holoenzyme. We find that the RNAP II general transcription factors (GTFs) remain abundant after infection and are recruited into viral replication compartments, suggesting that they continue to be involved in viral gene transcription. However, virus infection modifies the composition of the RNAP II holoenzyme, in particular triggering the loss of the essential GTF, TFIIE. Loss of TFIIE from the RNAP II holoenzyme requires viral IE gene expression, and viral IE proteins may be redundant in mediating this effect. Although viral IE proteins do not associate with the RNAP II holoenzyme, they interact with RNAP II in complexes of lower molecular mass. As the RNAP II holoenzyme containing TFIIE is necessary for activated transcription initiation and RNAP II large subunit phosphorylation in uninfected cells, virus-induced modifications to the holoenzyme may affect both of these processes, leading to aberrant phosphorylation of the RNAP II large subunit and repression of host gene transcription.
Collapse
Affiliation(s)
- H L Jenkins
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | |
Collapse
|
24
|
Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:5031-40. [PMID: 11438659 PMCID: PMC87229 DOI: 10.1128/mcb.21.15.5031-5040.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1 cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.
Collapse
Affiliation(s)
- K Pluta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mertens C, Hofmann I, Wang Z, Teichmann M, Sepehri Chong S, Schnölzer M, Franke WW. Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc Natl Acad Sci U S A 2001; 98:7795-800. [PMID: 11416169 PMCID: PMC35421 DOI: 10.1073/pnas.141219498] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2000] [Accepted: 05/03/2001] [Indexed: 12/16/2022] Open
Abstract
Plakophilin 2, a member of the arm-repeat protein family, is a dual location protein that occurs both in the cytoplasmic plaques of desmosomes as an architectural component and in an extractable form in the nucleoplasm. Here we report the existence of two nuclear particles containing plakophilin 2 and the largest subunit of RNA polymerase (pol) III (RPC155), both of which colocalize and are coimmunoselected with other pol III subunits and with the transcription factor TFIIIB. We also show that plakophilin 2 is present in the pol III holoenzyme, but not the core complex, and that it binds specifically to RPC155 in vitro. We propose the existence of diverse nuclear particles in which proteins known as plaque proteins of intercellular junctions are complexed with specific nuclear proteins.
Collapse
Affiliation(s)
- C Mertens
- Division of Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
28
|
Chong SS, Hu P, Hernandez N. Reconstitution of transcription from the human U6 small nuclear RNA promoter with eight recombinant polypeptides and a partially purified RNA polymerase III complex. J Biol Chem 2001; 276:20727-34. [PMID: 11279001 DOI: 10.1074/jbc.m100088200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human U6 small nuclear (sn) RNA core promoter consists of a proximal sequence element, which recruits the multisubunit factor SNAP(c), and a TATA box, which recruits the TATA box-binding protein, TBP. In addition to SNAP(c) and TBP, transcription from the human U6 promoter requires two well defined factors. The first is hB", a human homologue of the B" subunit of yeast TFIIIB generally required for transcription of RNA polymerase III genes, and the second is hBRFU, one of two human homologues of the yeast TFIIIB subunit BRF specifically required for transcription of U6-type RNA polymerase III promoters. Here, we have partially purified and characterized a RNA polymerase III complex that can direct transcription from the human U6 promoter when combined with recombinant SNAP(c), recombinant TBP, recombinant hB", and recombinant hBRFU. These results open the way to reconstitution of U6 transcription from entirely defined components.
Collapse
Affiliation(s)
- S S Chong
- Department of Microbiology and Graduate Program of Molecular and Cellular Biology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
29
|
Abstract
Cajal bodies (CBs) are small nuclear organelles that contain the three eukaryotic RNA polymerases and a variety of factors involved in transcription and processing of all types of RNA. A number of these factors, as well as subunits of polymerase (pol) II itself, are rapidly and specifically targeted to CBs when injected into the cell. It is suggested that pol I, pol II, and pol III transcription and processing complexes are preassembled in the CBs before transport to the sites of transcription on the chromosomes and in the nucleoli.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210-3301, USA.
| |
Collapse
|
30
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
31
|
Abstract
In eukaryotes, holoenzymes are large preassembled complexes containing RNA polymerases and variable sets of general transcription initiation factors and cofactors that are important for the regulation of gene expression. Recent advances in purification and characterization of RNA polymerase I holoenzyme from plants provide experimental data suggesting that it plays a key role in transcriptional regulation. These findings have a significant implication on our understanding of the mechanisms of promoter recognition, assembly of transcription initiation complexes, RNA chain elongation and transcription termination.
Collapse
Affiliation(s)
- A Kenzior
- Dept of Biochemistry, University of Missouri - Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
32
|
Ellsworth D, Finnen RL, Flint SJ. Superimposed promoter sequences of the adenoviral E2 early RNA polymerase III and RNA polymerase II transcription units. J Biol Chem 2001; 276:827-34. [PMID: 11031267 DOI: 10.1074/jbc.m007036200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human adenovirus type 2 E2 early (E2E) transcriptional control region contains an efficient RNA polymerase III promoter, in addition to the well characterized promoter for RNA polymerase II. To determine whether this promoter includes intragenic sequences, we examined the effects of precise substitutions introduced between positions +2 and +62 on E2E transcription in an RNA polymerase III-specific, in vitro system. Two noncontiguous sequences within this region were necessary for efficient or accurate transcription by this enzyme. The sequence and properties of the functional element proximal to the sites of initiation identified it as an A box. Although a B box sequence could not be unambiguously located, substitutions between positions +42 and +62 that severely impaired transcription also inhibited binding of the human general initiation protein TFIIIC. Thus, this region of the RNA polymerase III E2E promoter contains a B box sequence. We also identified previously unrecognized intragenic sequences of the E2E RNA polymerase II promoter. In conjunction with our previous observations, these data establish that RNA polymerase II and RNA polymerase III promoter sequences are superimposed from approximately positions -30 to +20 of the complex E2E transcriptional control region. The alterations in transcription induced by certain mutations suggest that components of the RNA polymerase II and RNA polymerase III transcriptional machines compete for access to overlapping binding sites in the E2E template.
Collapse
MESH Headings
- Adenovirus E2 Proteins/genetics
- Base Sequence
- Binding Sites
- Consensus Sequence/genetics
- Gene Expression Regulation, Viral
- Genes, Overlapping/genetics
- HeLa Cells
- Humans
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Polymerase II/metabolism
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Templates, Genetic
- Terminator Regions, Genetic/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- D Ellsworth
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
33
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
34
|
Teichmann M, Wang Z, Roeder RG. A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc Natl Acad Sci U S A 2000; 97:14200-5. [PMID: 11121026 PMCID: PMC18895 DOI: 10.1073/pnas.97.26.14200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor IIIB (TFIIIB) is directly involved in transcription initiation by RNA polymerase III in eukaryotes. Yeast contain a single TFIIIB activity that is comprised of the TATA-binding protein (TBP), TFIIB-related factor 1 (BRF1), and TFIIIB", whereas two distinct TFIIIB activities, TFIIIB-alpha and TFIIIB-beta, have been described in human cells. Human TFIIIB-beta is required for transcription of genes with internal promoter elements, and contains TBP, a TFIIIB" homologue (TFIIIB150), and a BRF1 homologue (TFIIIB90), whereas TFIIIB-alpha is required for transcription of genes with promoter elements upstream of the initiation site. Here we describe the identification, cloning, and characterization of TFIIIB50, a novel homologue of TFIIB and TFIIIB90. TFIIIB50 and tightly associated factors, along with TBP and TFIIIB150, reconstitute human TFIIIB-alpha activity. Thus, higher eukaryotes, in contrast to the yeast Saccharomyces cerevisiae, have evolved two distinct TFIIB-related factors that mediate promoter selectivity by RNA polymerase III.
Collapse
Affiliation(s)
- M Teichmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
35
|
Sutcliffe JE, Brown TR, Allison SJ, Scott PH, White RJ. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol Cell Biol 2000; 20:9192-202. [PMID: 11094071 PMCID: PMC102177 DOI: 10.1128/mcb.20.24.9192-9202.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2000] [Accepted: 09/07/2000] [Indexed: 12/28/2022] Open
Abstract
The retinoblastoma protein (RB) has been shown to suppress RNA polymerase (Pol) III transcription in vivo (R. J. White, D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides, Nature 382:88-90, 1996). This regulation involves interaction with TFIIIB, a multisubunit factor that is required for the expression of all Pol III templates (C. G. C. Larminie, C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and R. J. White, EMBO J. 16:2061-2071, 1997; W.-M. Chu, Z. Wang, R. G. Roeder, and C. W. Schmid, J. Biol. Chem. 272:14755-14761, 1997). However, it has not been established why RB binding to TFIIIB results in transcriptional repression. For several Pol II-transcribed genes, RB has been shown to inhibit expression by recruiting histone deacetylases, which are thought to decrease promoter accessibility. We present evidence that histone deacetylases exert a negative effect on Pol III activity in vivo. However, RB remains able to regulate Pol III transcription in the presence of the histone deacetylase inhibitor trichostatin A. Instead, RB represses by disrupting interactions between TFIIIB and other components of the basal Pol III transcription apparatus. Recruitment of TFIIIB to most class III genes requires its binding to TFIIIC2, but this can be blocked by RB. In addition, RB disrupts the interaction between TFIIIB and Pol III that is essential for transcription. The ability of RB to inhibit these key interactions can explain its action as a potent repressor of class III gene expression.
Collapse
Affiliation(s)
- J E Sutcliffe
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Abstract
In plants and animals, RNA polymerase I (pol I) can be purified in a form that is self-sufficient for accurate rRNA gene promoter-dependent transcription and that has biochemical properties suggestive of a single complex, or holoenzyme. In this study, we examined the promoter binding properties of a highly purified Brassica pol I holoenzyme activity. DNase I footprinting revealed protection of the core promoter region from approximately -30 to +20, in good agreement with the boundaries of the minimal promoter defined by deletion analyses (-33 to +6). Using conventional polyacrylamide electrophoretic mobility shift assays (EMSA), protein-DNA complexes were mostly excluded from the gel. However, agarose EMSA revealed promoter-specific binding activity that co-purified with promoter-dependent transcription activity. Titration, time-course, and competition experiments revealed the formation or dissociation of a single protein-DNA complex. This protein-DNA complex could be labeled by incorporation of radioactive ribonucleotides into RNA in the presence of alpha-amanitin, suggesting that the polymerase I enzyme is part of the complex. Collectively, these results suggest that transcriptionally competent pol I holoenzymes can associate with rRNA gene promoters in a single DNA binding event.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
37
|
Moir RD, Puglia KV, Willis IM. Interactions between the tetratricopeptide repeat-containing transcription factor TFIIIC131 and its ligand, TFIIIB70. Evidence for a conformational change in the complex. J Biol Chem 2000; 275:26591-8. [PMID: 10859316 DOI: 10.1074/jbc.m003991200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the transcription of tRNA and 5 S genes by RNA polymerase III, recruitment of the transcription factor (TF)IIIB is mediated by the promoter-bound assembly factor TFIIIC. A critical limiting step in this process is the interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC (TFIIIC131) and the TFIIB-related factor Brf1p/TFIIIB70. To facilitate biochemical studies of this interaction, we expressed a fragment of TFIIIC131, TFIIIC131-(1-580), that includes the minimal TFIIIB70 interaction domain defined by two-hybrid studies together with adjacent sequences, up to the end of TPR9, implicated in the assembly reaction. TFIIIC131-(1-580) interacts with TFIIIB70 in solution and inhibits the formation of TFIIIB70.TFIIIC.DNA complexes. In a coupled equilibrium binding assay, the formation of TFIIIC131-(1-580).TFIIIB70 complexes was adequately described by a single-site binding model and yielded an apparent equilibrium dissociation constant of 334 +/- 23 nm. CD spectroscopy and limited proteolysis experiments defined a well structured and largely protease-resistant core in TFIIIC131-(1-580) comprising part of the hydrophilic amino terminus, TPR1-5, the intervening non-TPR region, and TPR6-8. CD spectra showed that trifluoroethanol induced significant alpha-helical structure in TFIIIC131-(1-580). A more modest monovalent ion-dependent CD difference was observed in mixtures of TFIIIC131-(1-580) and TFIIIB70, suggesting that formation of the binary complex may proceed with the acquisition of alpha-helicity.
Collapse
Affiliation(s)
- R D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
38
|
Li TH, Kim C, Rubin CM, Schmid CW. K562 cells implicate increased chromatin accessibility in Alu transcriptional activation. Nucleic Acids Res 2000; 28:3031-9. [PMID: 10931917 PMCID: PMC108432 DOI: 10.1093/nar/28.16.3031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alu repeats in K562 cells are unusually hypomethylated and far more actively transcribed than those in other human cell lines and somatic tissues. Also, the level of Alu RNA in K562 cells is relatively insensitive to cell stresses, namely heat shock, adenovirus infection and treatment with cycloheximide, which increase the abundance of Alu RNA in HeLa and 293 cells. Recent advances in understanding the interactions between DNA methylation, transcriptional activation and chromatin conformation reveal reasons for the constitutively high level of Alu expression in K562 cells. Methylation represses transcription of transiently transfected Alu templates in all cell lines tested but cell stresses do not relieve this repression suggesting that they activate Alu transcription through another pathway. A relatively large fraction of the Alus within K562 chromatin is accessible to restriction enzyme cleavage and cell stresses increase the chromatin accessibility of Alus in HeLa and 293 cells. Cell stress evidently activates Alu transcription by rapidly remodeling chromatin to recruit additional templates.
Collapse
Affiliation(s)
- T H Li
- Section of Molecular and Cellular Biology and Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
39
|
Intine RV, Sakulich AL, Koduru SB, Huang Y, Pierstorff E, Goodier JL, Phan L, Maraia RJ. Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol Cell 2000; 6:339-48. [PMID: 10983981 DOI: 10.1016/s1097-2765(00)00034-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conversion of a nascent precursor tRNA to a mature functional species is a multipartite process that involves the sequential actions of several processing and modifying enzymes. La is the first protein to interact with pre-tRNAs in eukaryotes. An opal suppressor tRNA served as a functional probe to examine the activities of yeast and human (h)La proteins in this process in fission yeast. An RNA recognition motif and Walker motif in the metazoan-specific C-terminal domain (CTD) of hLa maintain pre-tRNA in an unprocessed state by blocking the 5'-processing site, impeding an early step in the pathway. Faithful phosphorylation of hLa on serine 366 reverses this block and promotes tRNA maturation. The results suggest that regulation of tRNA maturation at the level of RNase P cleavage may occur via phosphorylation of serine 366 of hLa.
Collapse
Affiliation(s)
- R V Intine
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Moreland RJ, Dresser ME, Rodgers JS, Roe BA, Conaway JW, Conaway RC, Hanas JS. Identification of a transcription factor IIIA-interacting protein. Nucleic Acids Res 2000; 28:1986-93. [PMID: 10756201 PMCID: PMC103300 DOI: 10.1093/nar/28.9.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription factor IIIA (TFIIIA) activates 5S ribosomal RNA gene transcription in eukaryotes. The protein from vertebrates has nine contiguous Cys(2)His(2)zinc fingers which function in nucleic acid binding, and a C-terminal region involved in transcription activation. In order to identify protein partners for TFIIIA, yeast two-hybrid screens were performed using the C-terminal region of Xenopus TFIIIA as an attractor and a rat cDNA library as a source of potential partners. A cDNA clone was identified which produced a protein in yeast that interacted with Xenopus TFIIIA but not with yeast TFIIIA. This rat clone was sequenced and the primary structure of the human homolog (termed TFIIIA-intP for TFIIIA-interacting protein) was determined from expressed sequence tags. In vitro interaction of recombinant human TFIIIA-intP with recombinant Xenopus TFIIIA was demonstrated by immuno-precipitation of the complex using anti-TFIIIA-intP antibody. Interaction of rat TFIIIA with rat TFIIIA-intP was indicated by co-chromatography of the two proteins on DEAE-5PW following fractionation of a rat liver extract on cation, anion and gel filtration resins. In a HeLa cell nuclear extract, recombinant TFIIIA-intP was able to stimulate TFIIIA-dependent transcription of the Xenopus 5S ribosomal RNA gene but not TFIIIA-independent transcription of the human adenovirus VA RNA gene.
Collapse
Affiliation(s)
- R J Moreland
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
42
|
Jones E, Kimura H, Vigneron M, Wang Z, Roeder RG, Cook PR. Isolation and characterization of monoclonal antibodies directed against subunits of human RNA polymerases I, II, and III. Exp Cell Res 2000; 254:163-72. [PMID: 10623476 DOI: 10.1006/excr.1999.4739] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human nuclei contain three different RNA polymerases: polymerases I, II, and III. Each polymerase is a multi-subunit enzyme with 12-17 subunits. The localization of these subunits is limited by the paucity of antibodies suitable for immunofluorescence. We now describe eight different monoclonal antibodies that react specifically with RPB6 (also known as RPA20, RPB14.4, or RPC20), RPB8 (RPA18, RPB17, or RPC18), RPC32, or RPC39 and which are suitable for such studies. Each antibody detects one specific band in immunoblots of nuclear extracts; each also immunoprecipitates large complexes containing many other subunits. When used for immunofluorescence, antibodies against the subunits shared by all three polymerases (i.e., RPB6, RPB8) gave a few bright foci in nucleoli and nucleoplasm, as well as many fainter nucleoplasmic foci; all the bright foci were generally distinct from speckles containing Sm antigen. Antibodies against the two subunits found only in polymerase III (i.e., RPC32, RPC39) gave a few bright and many faint nucleoplasmic foci, but no nucleolar foci. Growth in two transcriptional inhibitors-5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole and actinomycin D-led to the redistribution of each subunit in a characteristic manner.
Collapse
Affiliation(s)
- E Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Makino Y, Yogosawa S, Kayukawa K, Coin F, Egly JM, Wang ZX, Roeder RG, Yamamoto K, Muramatsu M, Tamura TA. TATA-Binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 1999; 19:7951-60. [PMID: 10567521 PMCID: PMC84880 DOI: 10.1128/mcb.19.12.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel TATA-binding protein (TBP)-interacting protein (TIP120) from the rat liver. Here, in an RNA polymerase II (RNAP II)-reconstituted transcription system, we demonstrate that recombinant TIP120 activates the basal level of transcription from various kinds of promoters regardless of the template DNA topology and the presence of TFIIE/TFIIH and TBP-associated factors. Deletion analysis demonstrated that a 412-residue N-terminal domain, which includes an acidic region and the TBP-binding domain, is required for TIP120 function. Kinetic studies suggest that TIP120 functions during preinitiation complex (PIC) formation at the step of RNAP II/TFIIF recruitment to the promoter but not after the completion of PIC formation. Electrophoretic mobility shift assays showed that TIP120 enhanced PIC formation, and TIP120 also stimulated the nonspecific transcription and DNA-binding activity of RNAP II. These lines of evidence suggest that TIP120 is able to activate basal transcription by overcoming a kinetic impediment to RNAP II/TFIIF integration into the TBP (TFIID)-TFIIB-DNA-complex. Interestingly, TIP120 also stimulates RNAP I- and III-driven transcription and binds to RPB5, one of the common subunits of the eukaryotic RNA polymerases, in vitro. Furthermore, in mouse cells, ectopically expressed TIP120 enhances transcription from all three classes (I, II, and III) of promoters. We propose that TIP120 globally regulates transcription through interaction with basal transcription mechanisms common to all three transcription systems.
Collapse
Affiliation(s)
- Y Makino
- Department of Biology, Faculty of Science, Chiba University, and CREST Japan Science and Technology Corporation, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 1999; 10:4385-402. [PMID: 10588665 PMCID: PMC25765 DOI: 10.1091/mbc.10.12.4385] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 09/24/1999] [Indexed: 01/09/2023] Open
Abstract
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem-loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
45
|
Teichmann M, Wang Z, Martinez E, Tjernberg A, Zhang D, Vollmer F, Chait BT, Roeder RG. Human TATA-binding protein-related factor-2 (hTRF2) stably associates with hTFIIA in HeLa cells. Proc Natl Acad Sci U S A 1999; 96:13720-5. [PMID: 10570139 PMCID: PMC24131 DOI: 10.1073/pnas.96.24.13720] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-binding protein (TBP)-related factor TRF1, has been described in Drosophila and a related protein, TRF2, has been found in a variety of higher eukaryotes. We report that human (h)TRF2 is encoded by two mRNAs with common protein coding but distinct 5' nontranslated regions. One mRNA is expressed ubiquitously (hTRF2-mRNA1), whereas the other (hTRF2-mRNA2) shows a restricted expression pattern and is extremely abundant in testis. In addition, we show that hTRF2 forms a stable stoichiometric complex with hTFIIA, but not with TAFs, in HeLa cells stably transfected with flag-tagged hTRF2. Neither recombinant human (rh)TRF2 nor the native flag.hTRF2-TFIIA complex is able to replace TBP or TFIID in basal or activated transcription from various RNA polymerase II promoters. Instead, rhTRF2, but not the flag.hTRF2-TFIIA complex, moderately inhibits basal or activated transcription in the presence of rhTBP or flag.TFIID. This effect is either completely (TBP-mediated transcription) or partially (TFIID-mediated transcription) counteracted by addition of free TFIIA. Neither rhTRF2 nor flag. hTRF2-TFIIA has any effect on the repression of TFIID-mediated transcription by negative cofactor-2 (NC2) and neither substitutes for TBP in RNA polymerase III-mediated transcription.
Collapse
Affiliation(s)
- M Teichmann
- Laboratory of Biochemistry, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999; 19:7697-704. [PMID: 10523658 PMCID: PMC84812 DOI: 10.1128/mcb.19.11.7697] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1999] [Accepted: 08/20/1999] [Indexed: 11/20/2022] Open
Abstract
Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that directly recognizes promoter elements and recruits TFIIIB and RNA polymerase III. Here we describe the cDNA cloning and characterization of the 90-kDa subunit (hTFIIIC90) that is present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC. hTFIIIC90 has no specific homology to any of the known yeast TFIIIC subunits. Immunodepletion and immunoprecipitation studies indicate that hTFIIIC90 is a bona fide subunit of TFIIIC2 and absolutely required for RNA polymerase III transcription. hTFIIIC90 shows interactions with the hTFIIIC220, hTFIIIC110, and hTFIIIC63 subunits of TFIIIC, the hTFIIIB90 subunit of TFIIIB, and the human RPC39 (hRPC39) and hRPC62 subunits of an initiation-specific subcomplex of RNA polymerase III. These interactions may facilitate both TFIIIB and RNA polymerase III recruitment to the preinitiation complex by TFIIIC. We show that hTFIIIC90 has an intrinsic histone acetyltransferase activity with a substrate specificity for histone H3.
Collapse
Affiliation(s)
- Y J Hsieh
- Laboratory of Biochemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
47
|
Hannan RD, Cavanaugh A, Hempel WM, Moss T, Rothblum L. Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Res 1999; 27:3720-7. [PMID: 10471742 PMCID: PMC148628 DOI: 10.1093/nar/27.18.3720] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional models for transcription initiation by RNA polymerase I include a stepwise assembly of basic transcription factors/regulatory proteins on the core promoter to form a preinitiation complex. In contrast, we have identified a preassembled RNA polymerase I (RPI) complex that contains all the factors necessary and sufficient to initiate transcription from the rDNA promoter in vitro. The purified RPI holoenzyme contains the RPI homolog of TFIID, SL-1 and the rDNA transcription terminator factor (TTF-1), but lacks UBF, an activator of rDNA transcription. Certain components of the DNA repair/replication system, including Ku70/80, DNA topoisomerase I and PCNA, are also associated with the RPI complex. We have found that the holo-enzyme supported specific transcription and that specific transcription was stimulated by the RPI transcription activator UBF. These results support the hypothesis that a fraction of the RPI exists as a preassembled, transcriptionally competent complex that is readily recruited to the rDNA promoter, i.e. as a holoenzyme, and provide important new insights into the mechanisms governing initiation by RPI.
Collapse
Affiliation(s)
- R D Hannan
- Cancer Research Centre and Department of Biochemistry, Laval University, Hotel-Dieu de Quebec, 11 Cote du Palais, Quebec G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
48
|
Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, Laskey R, Bentley DL. MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol 1999; 19:6154-63. [PMID: 10454562 PMCID: PMC84545 DOI: 10.1128/mcb.19.9.6154] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MCMs are a family of proteins related to ATP-dependent helicases that bind to origin recognition complexes and are required for initiation of DNA replication. We report that antibodies against MCM2(BM28) specifically inhibited transcription by RNA polymerase II (Pol II) in microinjected Xenopus oocytes. Consistent with this observation, MCM2 and other MCMs copurified with Pol II and general transcription factors (GTFs) in high-molecular-weight holoenzyme complexes isolated from Xenopus oocytes and HeLa cells. Pol II and GTFs also copurified with MCMs isolated by anti-MCM3 immunoaffinity chromatography. MCMs were specifically displaced from the holoenzyme complex by antibody against the C-terminal domain (CTD) of Pol II. In addition, MCMs bound to a CTD affinity column, suggesting that their association with holoenzyme depends in part on this domain of Pol II. These results suggest a new function for MCM proteins as components of the Pol II transcriptional apparatus.
Collapse
Affiliation(s)
- K Yankulov
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mazzacano CA, Du X, Thiem SM. Global protein synthesis shutdown in Autographa californica nucleopolyhedrovirus-infected Ld652Y cells is rescued by tRNA from uninfected cells. Virology 1999; 260:222-31. [PMID: 10417257 DOI: 10.1006/viro.1999.9827] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Global protein synthesis arrest occurs in Autographa californica nucleopolyhedrovirus (AcNPV)-infected Ld652Y cells at late times postinfection (p.i.). A Lymantria dispar nucleopolyhedrovirus gene, hrf-1, precludes this protein synthesis arrest. We used in vitro translation assays to characterize the translation defect. Cell-free lysates prepared from uninfected Ld652Y cells, AcNPV-infected cells harvested at early times p.i., and cells infected with vAchrf-1, a recombinant AcNPV bearing hrf-1, all supported translation. Lysates prepared from AcNPV-infected Ld652Y cells at late times p.i. did not support translation, but activity was restored by adding small RNA species from mock-, vAchrf-1- (24 or 48 h p.i.), and AcNPV- (6 h p.i. ) infected cells. Small RNA species (24 and 48 h p.i.) from AcNPV-infected cells did not rescue translation. Assays of RNA species further fractionated by ion exchange chromatography demonstrated that tRNA rescued translation. Although specific defective tRNA species were not revealed by comparative two-dimensional gel analysis, analysis of (32)P-labeled tRNAs showed a reduction in de novo synthesis of small RNA isolated from AcNPV-infected cells compared with mock- and vAchrf-1-infected cells. This study suggests a mechanism of translation arrest involving defective or depleted tRNA species in AcNPV-infected Ld652Y cells.
Collapse
Affiliation(s)
- C A Mazzacano
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824-1115, USA
| | | | | |
Collapse
|
50
|
Flores A, Briand JF, Gadal O, Andrau JC, Rubbi L, Van Mullem V, Boschiero C, Goussot M, Marck C, Carles C, Thuriaux P, Sentenac A, Werner M. A protein-protein interaction map of yeast RNA polymerase III. Proc Natl Acad Sci U S A 1999; 96:7815-20. [PMID: 10393904 PMCID: PMC22144 DOI: 10.1073/pnas.96.14.7815] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the yeast RNA polymerase (pol) III was investigated by exhaustive two-hybrid screening using a library of random genomic fragments fused to the Gal4 activation domain. This procedure allowed us to identify contacts between individual polypeptides, localize the contact domains, and deduce a protein-protein interaction map of the multisubunit enzyme. In all but one case, pol III subunits were able to interact in vivo with one or sometimes two partner subunits of the enzyme or with subunits of TFIIIC. Four subunits that are common to pol I, II, and III (ABC27, ABC14.5, ABC10alpha, and ABC10beta), two that are common to pol I and III (AC40 and AC19), and one pol III-specific subunit (C11) can associate with defined regions of the two large subunits. These regions overlapped with highly conserved domains. C53, a pol III-specific subunit, interacted with a 37-kDa polypeptide that copurifies with the enzyme and therefore appears to be a unique pol III subunit (C37). Together with parallel interaction studies based on dosage-dependent suppression of conditional mutants, our data suggest a model of the pol III preinitiation complex.
Collapse
Affiliation(s)
- A Flores
- Service de Biochimie et Génétique Moléculaire, Bât. 142, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|