1
|
Kinnersley B, Jung J, Cornish AJ, Chubb D, Laxton R, Frangou A, Gruber AJ, Sud A, Caravagna G, Sottoriva A, Wedge DC, Booth T, Al-Sarraj S, Lawrence SED, Albanese E, Anichini G, Baxter D, Boukas A, Chowdhury YA, D'Urso P, Corns R, Dapaah A, Edlmann E, Greenway F, Grundy P, Hill CS, Jenkinson MD, Trichinopoly Krishna S, Smith S, Manivannan S, Martin AJ, Matloob S, Mukherjee S, O'Neill K, Plaha P, Pollock J, Price S, Rominiyi O, Sachdev B, Saeed F, Sinha S, Thorne L, Ughratdar I, Whitfield P, Youshani AS, Bulbeck H, Arumugam P, Houlston R, Ashkan K. Genomic landscape of diffuse glioma revealed by whole genome sequencing. Nat Commun 2025; 16:4233. [PMID: 40335506 PMCID: PMC12059081 DOI: 10.1038/s41467-025-59156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Diffuse gliomas are the commonest malignant primary brain tumour in adults. Herein, we present analysis of the genomic landscape of adult glioma, by whole genome sequencing of 403 tumours (256 glioblastoma, 89 astrocytoma, 58 oligodendroglioma; 338 primary, 65 recurrence). We identify an extended catalogue of recurrent coding and non-coding genetic mutations that represents a source for future studies and provides a high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and extrachromosomal DNA. Finally, we relate these to clinical outcome. As well as identifying drug targets for treatment of glioma our findings offer the prospect of improving treatment allocation with established targeted therapies.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK.
- UCL Cancer Institute, 72 Huntley St, WC1E 6DD, London, UK.
| | - Josephine Jung
- Institute of Psychiatry, Psychology and Neurosciences, Kings College London, Strand, WC2R 2LS, London, UK.
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK.
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ross Laxton
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Anna Frangou
- Cancer Genomics, Big Data Institute, Nuffield Department of Medicine, Old Road Campus, OX3 7LF, Oxford, UK
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Giulio Caravagna
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - David C Wedge
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Thomas Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas's Hospital, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK
| | - Samuel E D Lawrence
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Erminia Albanese
- Department of Neurosurgery, Royal Stoke University Hospital, Newcastle Road, ST4 6QG, Stoke-on-Trent, UK
| | - Giulio Anichini
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, 3S corridor, Fulham Palace Road, London, W6 8RF, UK
| | - David Baxter
- Department of Neurosurgery, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Alexandros Boukas
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, Oxford, UK
| | - Yasir A Chowdhury
- Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, B15 2GW, Birmingham, UK
| | - Pietro D'Urso
- Department of Neurosurgery, Manchester Royal Infirmary, Oxford Rd, M13 9WL, Manchester, UK
| | - Robert Corns
- Department of Neurosurgery, Leeds General Infirmary, Great George St, LS1 3EX, Leeds, UK
| | - Andrew Dapaah
- Department of Neurosurgery, Queen's Medical Centre NHS Trust, Derby Road, Lenton, NG7 2UH, Nottingham, UK
| | - Ellie Edlmann
- South West Neurosurgery Unit, University Hospitals Plymouth NHS Trust, Derriford Road, Crownhill, PL6 8DH, Plymouth, UK
| | - Fay Greenway
- Department of Neurosurgery, St. George's University Hospitals NHS Foundation Trust, Blackshaw Rd, SW17 0QT, London, UK
| | - Paul Grundy
- Department of Neurosurgery, Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, UK
| | - Ciaran S Hill
- UCL Cancer Institute, 72 Huntley St, WC1E 6DD, London, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, L9 7LJ, Liverpool, UK
| | - Sandhya Trichinopoly Krishna
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, L9 7LJ, Liverpool, UK
| | - Stuart Smith
- Department of Neurosurgery, Queen's Medical Centre NHS Trust, Derby Road, Lenton, NG7 2UH, Nottingham, UK
| | - Susruta Manivannan
- Department of Neurosurgery, Southampton General Hospital, Tremona Road, SO16 6YD, Southampton, UK
| | - Andrew J Martin
- Department of Neurosurgery, St. George's University Hospitals NHS Foundation Trust, Blackshaw Rd, SW17 0QT, London, UK
| | - Samir Matloob
- Department of Neurosurgery, Queen's Hospital Romford, Rom Valley Way, RM7 0AG, Romford, UK
| | - Soumya Mukherjee
- Department of Neurosurgery, Addenbrookes Hospital, Hills Rd, CB2 0QQ, Cambridge, UK
| | - Kevin O'Neill
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, 3S corridor, Fulham Palace Road, London, W6 8RF, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, Oxford, UK
| | - Jonathan Pollock
- Department of Neurosurgery, Queen's Hospital Romford, Rom Valley Way, RM7 0AG, Romford, UK
| | - Stephen Price
- Department of Neurosurgery, Addenbrookes Hospital, Hills Rd, CB2 0QQ, Cambridge, UK
| | - Ola Rominiyi
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, Broomhall, S10 2JF, Sheffield, UK
| | - Bobby Sachdev
- Department of Neurosurgery, Royal Stoke University Hospital, Newcastle Road, ST4 6QG, Stoke-on-Trent, UK
| | - Fozia Saeed
- Department of Neurosurgery, Leeds General Infirmary, Great George St, LS1 3EX, Leeds, UK
| | - Saurabh Sinha
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, Broomhall, S10 2JF, Sheffield, UK
| | - Lewis Thorne
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, UK
| | - Ismail Ughratdar
- Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, B15 2GW, Birmingham, UK
| | - Peter Whitfield
- South West Neurosurgery Unit, University Hospitals Plymouth NHS Trust, Derriford Road, Crownhill, PL6 8DH, Plymouth, UK
| | - Amir Saam Youshani
- Department of Neurosurgery, Manchester Royal Infirmary, Oxford Rd, M13 9WL, Manchester, UK
| | - Helen Bulbeck
- Brainstrust, 4 Yvery Court, Castle Road, PO31 7QG, Cowes, Isle of Wight, UK
| | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Keyoumars Ashkan
- Institute of Psychiatry, Psychology and Neurosciences, Kings College London, Strand, WC2R 2LS, London, UK.
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, SE5 9RS, London, UK.
| |
Collapse
|
2
|
Militi S, Nibhani R, Pook M, Pauklin S. SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation. Protein Cell 2025; 16:260-285. [PMID: 38758030 PMCID: PMC12053477 DOI: 10.1093/procel/pwae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
3
|
Lee W, Kang B, Kim HM, Ishida T, Shin M, Iwashita M, Nitta M, Shiraishi A, Kiyonari H, Shimoya K, Masamoto K, Roh TY, Kosodo Y. Cyclin-dependent kinase inhibitor p18 regulates lineage transitions of excitatory neurons, astrocytes, and interneurons in the mouse cortex. EMBO J 2025; 44:382-412. [PMID: 39668249 PMCID: PMC11730326 DOI: 10.1038/s44318-024-00325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Neural stem cells (NSCs) can give rise to both neurons and glia, but the regulatory mechanisms governing their differentiation transitions remain incompletely understood. Here, we address the role of cyclin-dependent kinase inhibitors (CDKIs) in the later stages of dorsal cortical development. We find that the CDKIs p18 and p27 are upregulated at the onset of astrocyte generation. Acute manipulation of p18 and p27 levels shows that CDKIs modulate lineage switching between upper-layer neurons and astrocytes at the transitional stage. We generate a conditional knock-in mouse model to induce p18 in NSCs. The transcriptomic deconvolution of microdissected tissue reveals that increased levels of p18 promote glial cell development and activate Delta-Notch signaling. Furthermore, we show that p18 upregulates the homeobox transcription factor Dlx2 to subsequently induce the differentiation of olfactory bulb interneurons while reducing the numbers of upper-layer neurons and astrocytes at the perinatal stage. Clonal analysis using transposon-based reporters reveals that the transition from the astrocyte to the interneuron lineage is potentiated by p18 at the single-cell level. In sum, our study reports a function of p18 in determining the developmental boundaries among different cellular lineages arising sequentially from NSCs in the dorsal cortex.
Collapse
Affiliation(s)
- Wonyoung Lee
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Byunghee Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyo-Min Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Tsuyoshi Ishida
- Department of Obstetrics and Gynecology, Kobe Tokushukai Hospital, Kobe, Japan
| | - Minkyung Shin
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Misato Iwashita
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Masahiro Nitta
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Koichiro Shimoya
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Kurashiki, Japan
| | - Kazuto Masamoto
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Yoichi Kosodo
- Neural Regeneration Lab, Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Saito A, Omura I, Imaizumi K. CREB3L1/OASIS: cell cycle regulator and tumor suppressor. FEBS J 2024; 291:4853-4866. [PMID: 38215153 DOI: 10.1111/febs.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Cell cycle checkpoints detect DNA errors, eventually arresting the cell cycle to promote DNA repair. Failure of such cell cycle arrest causes aberrant cell proliferation, promoting the pathogenesis of multiple diseases, including cancer. Endoplasmic reticulum (ER) stress transducers activate the unfolded protein response, which not only deals with unfolded proteins in ER lumen but also orchestrates diverse physiological phenomena such as cell differentiation and lipid metabolism. Among ER stress transducers, cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1) [also known as old astrocyte specifically induced substance (OASIS)] is an ER-resident transmembrane transcription factor. This molecule is cleaved by regulated intramembrane proteolysis, followed by activation as a transcription factor. OASIS is preferentially expressed in specific cells, including astrocytes and osteoblasts, to regulate their differentiation. In accordance with its name, OASIS was originally identified as being upregulated in long-term-cultured astrocytes undergoing cell cycle arrest because of replicative stress. In the context of cell cycle regulation, previously unknown physiological roles of OASIS have been discovered. OASIS is activated as a transcription factor in response to DNA damage to induce p21-mediated cell cycle arrest. Although p21 is directly induced by the master regulator of the cell cycle, p53, no crosstalk occurs between p21 induction by OASIS or p53. Here, we summarize previously unknown cell cycle regulation by ER-resident transcription factor OASIS, particularly focusing on commonalities and differences in cell cycle arrest between OASIS and p53. This review also mentions tumorigenesis caused by OASIS dysfunctions, and OASIS's potential as a tumor suppressor and therapeutic target.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
5
|
Huang Y, Wang Q, Zhou W, Jiang Y, He K, Huang W, Feng Y, Wu H, Liu L, Pan Y, Huang Y, Chen Z, Li W, Huang Y, Lin G, Zhang Y, Ren Y, Xu K, Yu Y, Peng Y, Pan X, Pan S, Hu H, Hu Y. Prenatal p25-activated Cdk5 induces pituitary tumorigenesis through MCM2 phosphorylation-mediated cell proliferation. Neoplasia 2024; 57:101054. [PMID: 39366214 PMCID: PMC11489071 DOI: 10.1016/j.neo.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Aberrant expression of cyclin-dependent kinase 5 (Cdk5) has been reported in pituitary adenomas. However, the role of Cdk5 in the tumorigenesis remains unclear. We show that prenatal p25-activated Cdk5 phosphorylates minichromosome maintenance protein 2 (Mcm2), enhancing minichromosome maintenance (MCM) family proteins and driving intermediate lobe-located melanotrope-originated pituitary tumorigenesis. In a mouse model with CaMKII promoter-driven transgenic induction of p25, we observed intermediate lobe-originated pituitary adenoma producing non-functional proopiomelanocortin (POMC)-derived peptides under persistent p25 overexpression. Single-cell RNA sequencing revealed Mcm2 may play an important role during tumor progression. Subsequently, Mcm2 was identified as a potential phosphorylated substrate of Cdk5, mediating the tumorous proliferation of melanotrope cells. Silencing Cdk5 or Mcm2 suppressed cell proliferation and colony formation in the 293T cell lines. Therefore, our findings provide a new mouse model of intermediate lobe-originated pituitary adenoma induced by p25/Cdk5 and unveil a previously unappreciated role of Cdk5 and Mcm2 in pituitary adenoma tumorigenesis.
Collapse
Affiliation(s)
- Yingwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, Jiangmen Central Hospital, Jiangmen, China
| | - Qiqi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weiwei Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wei Huang
- Department of Neurology, the First People's Hospital of Shunde, Southern Medical University, Guangzhou, China
| | - Yating Feng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hong Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanchuan Lin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongyan Ren
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China; Precision Regenerative Medicine Research Centre, Medical Science Division, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China; China Ministry Education Key Laboratory of Infectious Diseases Research in South China, Southern Medical University, Guangzhou, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
8
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
9
|
Sosa LDV, Picech F, Perez P, Gutierrez S, Leal RB, De Paul A, Torres A, Petiti JP. Regulation of FGF2-induced proliferation by inhibitory GPCR in normal pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1183151. [PMID: 37576961 PMCID: PMC10414184 DOI: 10.3389/fendo.2023.1183151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Intracellular communication is essential for the maintenance of the anterior pituitary gland plasticity. The aim of this study was to evaluate whether GPCR-Gαi modulates basic fibroblast growth factor (FGF2)-induced proliferative activity in normal pituitary cell populations. Methods Anterior pituitary primary cell cultures from Wistar female rats were treated with FGF2 (10ng/mL) or somatostatin analog (SSTa, 100nM) alone or co-incubated with or without the inhibitors of GPCR-Gαi, pertussis toxin (PTX, 500nM), MEK inhibitor (U0126, 100µM) or PI3K inhibitor (LY 294002, 10 μM). Results FGF2 increased and SSTa decreased the lactotroph and somatotroph BrdU uptak2e (p<0.05) whereas the FGF2-induced S-phase entry was prevented by SSTa co-incubation in both cell types, with these effects being reverted by PTX, U0126 or LY294002 pre-incubation. The inhibition of lactotroph and somatotroph mitosis was associated with a downregulation of c-Jun expression, a decrease of phosphorylated (p) ERK and pAKT. Furthermore, SSTa was observed to inhibit the S-phase entry induced by FGF2, resulting in a further increase in the number of cells in the G1 phase and a concomitant reduction in the number of cells in the S phases (p< 0.05), effects related to a decrease of cyclin D1 expression and an increase in the expression of the cell cycle inhibitors p27 and p21. Discussion In summary, the GPCR-Gαi activated by SSTa blocked the pro-proliferative effect of FGF2 in normal pituitary cells via a MEK-dependent mechanism, which acts as a mediator of both anti and pro-mitogenic signals, that may regulate the principal effectors of the G1 to S-phase transition.
Collapse
Affiliation(s)
- Liliana del V. Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Rodrigo Bainy Leal
- Universidade Federal de Santa Catarina, Florianópolis, Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Santa Catarina, Brazil
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Alicia Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| |
Collapse
|
10
|
Bai F, Liu X, Zhang X, Mao Z, Wen H, Ma J, Pei XH. p18INK4C and BRCA1 inhibit follicular cell proliferation and dedifferentiation in thyroid cancer. Cell Cycle 2023; 22:1637-1653. [PMID: 37345432 PMCID: PMC10361144 DOI: 10.1080/15384101.2023.2225938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Only 3% of thyroid cancers are medullary thyroid carcinomas (MTCs), the rest are follicular epithelial cell derived non-MTCs (NMTCs). A dysfunctional INK4-CDK4-RB pathway is detected in most of NMTCs. DNA repair defects and genome instability are associated with NMTC dedifferentiation and aggressiveness. Whether inactivation of the INK4-CDK4-RB pathway induces NMTCs and how differentiation of NMTC cells is controlled remain elusive. In this study, we generated p18Ink4c and Brca1 singly and doubly deficient mice as well as p16Ink4a and Brca1 singly and doubly deficient mice. By using these mice and human thyroid carcinoma cell lines, we discovered that loss of p18Ink4c, not p16Ink4a, in mice stimulated follicular cell proliferation and induced NMTCs. Depletion of Brca1 alone or both p16Ink4a and Brca1 did not induce thyroid tumor. Depletion of Brca1 in p18Ink4c null mice results in poorly differentiated and aggressive NMTCs with epithelial-mesenchymal transition (EMT) features and enhanced DNA damage. Knockdown of BRCA1 in thyroid carcinoma cells activated EMT and promoted tumorigenesis whereas overexpression of BRCA1 inhibited EMT. BRCA1 and EMT marker expression were inversely related in human thyroid cancers. Our finding, for the first time, demonstrates that inactivation of INK4-CDK4-RB pathway induces NMTCs and that Brca1 deficiency promotes dedifferentiation of NMTC cells. These results suggest that BRCA1 and p18INK4C collaboratively suppress thyroid tumorigenesis and progression and CDK4 inhibitors will be effective for treatment of INK4-inactivated or cyclin D-overexpressed thyroid carcinomas.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xu Zhang
- Department of Pathology, School of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Zhuo Mao
- Department of Physiology, Shenzhen University Health Science Center, Shenzhen, China
| | - He Wen
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jinshan Ma
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Thoracic Surgery, Xinjiang Uigur Autonomous Region People’s Hospital, Xinjiang, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, China
- Dewitt Daughtry Family Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
11
|
Shaikh A, Wesner AA, Abuhattab M, Kutty RG, Premnath P. Cell cycle regulators and bone: development and regeneration. Cell Biosci 2023; 13:35. [PMID: 36810262 PMCID: PMC9942316 DOI: 10.1186/s13578-023-00988-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Cell cycle regulators act as inhibitors or activators to prevent cancerogenesis. It has also been established that they can play an active role in differentiation, apoptosis, senescence, and other cell processes. Emerging evidence has demonstrated a role for cell cycle regulators in bone healing/development cascade. We demonstrated that deletion of p21, a cell cycle regulator acting at the G1/S transition enhanced bone repair capacity after a burr-hole injury in the proximal tibia of mice. Similarly, another study has shown that inhibition of p27 can increase bone mineral density and bone formation. Here, we provide a concise review of cell cycle regulators that influence cells like osteoblasts, osteoclasts, and chondrocytes, during development and/or healing of bone. It is imperative to understand the regulatory processes that govern cell cycle during bone healing and development as this will pave the way to develop novel therapies to improve bone healing after injury in instances of aged or osteoporotic fractures.
Collapse
Affiliation(s)
- Alisha Shaikh
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Austin A. Wesner
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Mohanad Abuhattab
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Raman G. Kutty
- Department of Internal Medicine, White River Health System, Batesville, AR USA
| | - Priyatha Premnath
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI, 53211, USA.
| |
Collapse
|
12
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
13
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
14
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
15
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
16
|
Pereira MJ, Vranic M, Kamble PG, Jernow H, Kristófi R, Holbikova E, Skrtic S, Kullberg J, Svensson MK, Hetty S, Eriksson JW. CDKN2C expression in adipose tissue is reduced in type II diabetes and central obesity: impact on adipocyte differentiation and lipid storage? Transl Res 2022; 242:105-121. [PMID: 34896253 DOI: 10.1016/j.trsl.2021.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
CDKN2C/p18 (Cyclin-Dependent Kinase Inhibitor 2C) is a cell growth regulator that controls cell cycle progression and has previously been associated with increased risk for type II diabetes (T2D) and reduced peripheral adipose tissue (AT) storage capacity. This study explored the role of CDKN2C in AT lipid and glucose metabolism in T2D. Expression of CDKN2C and other genes was analyzed by transcriptomics, or real-time PCR in subcutaneous AT (SAT) samples obtained from T2D and control subjects matched for sex, age and BMI and also in paired SAT and omental AT (OAT) samples. Functional studies included adipocyte glucose uptake and lipolysis rates. CRISPR/Cas9 CDKN2C gene knockdown was performed in human preadipocytes to assess adipogenesis. CDKN2C mRNA expression in SAT and OAT was reduced in T2D and obese subjects compared to controls. CDKN2C expression in SAT was inversely correlated with measures of hyperglycemia, insulin resistance and visceral adiposity and positively correlated with expression of genes in several metabolic pathways, including insulin signaling and fatty acid and carbohydrate metabolism. CDKN2C protein was mainly expressed in adipocytes compared to stromal vascular cells, and its gene and protein expression was up-regulated during adipocyte differentiation. Knockdown of CDKN2C did not affect the percentage of differentiating cells compared to wild type cultures. However, CDKN2C knockdown cultures had significantly lower expression of differentiation markers CEBPA, ADIPOQ and FASN and transiently reduced lipid accumulation per adipocyte during differentiation. Our findings suggest that adipose CDKN2C expression might be reduced as a consequence of insulin resistance and obesity, and this can further contribute to impairment of SAT lipid storage.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Henning Jernow
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Ema Holbikova
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden; Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Kullberg
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
18
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Cai T, Qin Q, Song R, Zhao J, Wang G, Zhang J. Identifying and Validating Differentially Methylated Regions in Newly Diagnosed Patients with Graves' Disease. DNA Cell Biol 2021; 40:482-490. [PMID: 33617351 DOI: 10.1089/dna.2020.6215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This research used combined bioinformatic methods to identify differentially methylated regions (DMRs) in newly diagnosed patients with Graves' disease (GD). Peripheral blood from six GD patients and controls was collected and methyl-DNA immunoprecipitation (MeDIP), and NimbleGen Human DNA Methylation 3 × 720 K promoter plus CpG island microarrays were further analyzed. DMRs were categorized into low-methylated genes and high-methylated genes, which were mapped into a protein-protein interaction (PPI) network constructed by a dataset. Then, six candidate genes were validated in an expanded population with 32 GD patients and 30 controls using bisulfite amplicon sequencing. Top 10 hub genes revealed by PPI analysis were CRHR1, CAMK2A, SERPINA1, RANBP9, ICAM1, ADRB2, KRTAP13-1, PTPRA, S100A2, and KPRP. Five CpG sites of CDKN2C (51436061), SERPINA1 (94856657), B3GNT2 (62422532 and 62422689), and IRS4 (107979477) were validated, having significantly different methylation levels between GD patients and controls. Based on gender stratification, nine significant CpG sites of CDKN2C (51436061), SERPINA1 (94855831), and B3GNT2 (62422301, 62422327, 62422356, 62422365, 62422374, 62422532, and 62422689) were detected between female GD patients and controls. The methylation level of 62422532 of B3GNT2 was significantly associated with levels of serum TGAb and TRAb. In addition, the methylation level of 62422689 of B3GNT2 showed significant correlation with the age of GD patients. In the analysis of prediction of transcription factor binding at specific CpG sites in B3GNT2 promoter region, paired box protein 5 (Pax-5) and CCAAT/enhancer-binding protein (C/EBP β) might be under the influence of methylation at CpG sites 62422365 and 62422532, respectively. CDKN2C, SERPINA1, IRS4, and especially B3GNT2 were potential aberrantly methylated genes related to GD. These findings might supply the latest information of DNA methylation in the GD disease.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Department of Endocrinology and The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Guofei Wang
- Department of Neurosurgery, The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Jinan Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
20
|
Bai F, Liu S, Liu X, Hollern DP, Scott A, Wang C, Zhang L, Fan C, Fu L, Perou CM, Zhu WG, Pei XH. PDGFRβ is an essential therapeutic target for BRCA1-deficient mammary tumors. Breast Cancer Res 2021; 23:10. [PMID: 33478572 PMCID: PMC7819225 DOI: 10.1186/s13058-021-01387-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Basal-like breast cancers (BLBCs) are a leading cause of cancer death due to their capacity to metastasize and lack of effective therapies. More than half of BLBCs have a dysfunctional BRCA1. Although most BRCA1-deficient cancers respond to DNA-damaging agents, resistance and tumor recurrence remain a challenge to survival outcomes for BLBC patients. Additional therapies targeting the pathways aberrantly activated by BRCA1 deficiency are urgently needed. METHODS Most BRCA1-deficient BLBCs carry a dysfunctional INK4-RB pathway. Thus, we created genetically engineered mice with Brca1 loss and deletion of p16INK4A, or separately p18INK4C, to model the deficient INK4-RB signaling in human BLBC. By using these mutant mice and human BRCA1-deficient and proficient breast cancer tissues and cells, we tested if there exists a druggable target in BRCA1-deficient breast cancers. RESULTS Heterozygous germline or epithelium-specific deletion of Brca1 in p18INK4C- or p16INK4A-deficient mice activated Pdgfrβ signaling, induced epithelial-to-mesenchymal transition, and led to BLBCs. Confirming this role, targeted deletion of Pdgfrβ in Brca1-deficient tumor cells promoted cell death, induced mesenchymal-to-epithelial transition, and suppressed tumorigenesis. Importantly, we also found that pharmaceutical inhibition of Pdgfrβ and its downstream target Pkcα suppressed Brca1-deficient tumor initiation and progression and effectively killed BRCA1-deficient cancer cells. CONCLUSIONS Our work offers the first genetic and biochemical evidence that PDGFRβ-PKCα signaling is repressed by BRCA1, which establishes PDGFRβ-PKCα signaling as a therapeutic target for BRCA1-deficient breast cancers.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Shiqin Liu
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandria Scott
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lihan Zhang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518039, China
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
22
|
The Role of CDKs and CDKIs in Murine Development. Int J Mol Sci 2020; 21:ijms21155343. [PMID: 32731332 PMCID: PMC7432401 DOI: 10.3390/ijms21155343] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) and their inhibitors (CDKIs) play pivotal roles in the regulation of the cell cycle. As a result of these functions, it may be extrapolated that they are essential for appropriate embryonic development. The twenty known mouse CDKs and eight CDKIs have been studied to varying degrees in the developing mouse, but only a handful of CDKs and a single CDKI have been shown to be absolutely required for murine embryonic development. What has become apparent, as more studies have shone light on these family members, is that in addition to their primary functional role in regulating the cell cycle, many of these genes are also controlling specific cell fates by directing differentiation in various tissues. Here we review the extensive mouse models that have been generated to study the functions of CDKs and CDKIs, and discuss their varying roles in murine embryonic development, with a particular focus on the brain, pancreas and fertility.
Collapse
|
23
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
24
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Abstract
The appropriate activation of the adaptive immune system relies upon the reprogramming of naïve T cells into specialized effector T cells that can combat pathogens and tumors. Naïve T cells are actively maintained in a state of hyporesponsiveness termed quiescence, which is characterized by small cell size, low proliferative rate, and low basal metabolism. Engagement of antigen and costimulatory receptors drives T cells to exit quiescence to promote subsequent clonal expansion and functional differentiation. The exit from quiescence, which precedes activation-induced proliferation, is associated with extensive remodeling of cellular morphology and metabolism. Here, we define and discuss the implications of the six key features of the exit of naïve T cells from quiescence: (i) cell-cycle entry, (ii) cell growth, (iii) autocrine or paracrine interleukin-2 signaling, (iv) anabolic metabolism, (v) nutrient uptake, and (vi) remodeling of mitochondrial function. Ultimately, understanding how naïve T cells meet each of these requirements for quiescence exit will allow for the tuning of T-cell responses to treat infectious diseases, autoimmunity, and cancer. Cancer Immunol Res; 6(5); 502-8. ©2018 AACR.
Collapse
Affiliation(s)
- Nicole M Chapman
- St. Jude Children's Research Hospital, Department of Immunology, Memphis, Tennessee
| | - Hongbo Chi
- St. Jude Children's Research Hospital, Department of Immunology, Memphis, Tennessee.
| |
Collapse
|
26
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
27
|
Caron N, Genin EC, Marlier Q, Verteneuil S, Beukelaers P, Morel L, Hu MG, Hinds PW, Nguyen L, Vandenbosch R, Malgrange B. Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity. Cell Mol Life Sci 2018; 75:3817-3827. [PMID: 29728713 PMCID: PMC11105564 DOI: 10.1007/s00018-018-2832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/02/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Neural stem cells give rise to granule dentate neurons throughout life in the hippocampus. Upon activation, these stem cells generate fast proliferating progenitors that complete several rounds of divisions before differentiating into neurons. Although the mechanisms regulating the activation of stem cells have been intensively studied, little attention has been given so far to the intrinsic machinery allowing the expansion of the progenitor pool. The cell cycle protein Cdk6 positively regulates the proliferation of hippocampal progenitors, but the mechanism involved remains elusive. Whereas Cdk6 functions primarily as a cell cycle kinase, it can also act as transcriptional regulator in cancer cells and hematopoietic stem cells. Using mouse genetics, we show here that the function of Cdk6 in hippocampal neurogenesis relies specifically on its kinase activity. The present study also reveals a specific regulatory mechanism for Cdk6 in hippocampal progenitors. In contrast to the classical model of the cell cycle, we observe that the Cip/Kip family member p27, rather than the Ink4 family, negatively regulates Cdk6 in the adult hippocampus. Altogether, our data uncover a unique, cell type-specific regulatory mechanism controlling the expansion of hippocampal progenitors, where Cdk6 kinase activity is modulated by p27.
Collapse
Affiliation(s)
- Nicolas Caron
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Emmanuelle C Genin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Quentin Marlier
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Sébastien Verteneuil
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Pierre Beukelaers
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, USA
| | - Philip W Hinds
- Molecular Oncology Research Institute, Tufts Medical Center, 75 Kneeland Street, Boston, MA, USA
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Laurent Nguyen
- Molecular Regulation of Neurogenesis, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, Quartier Hôpital, University of Liège, Avenue Hippocrate 15, B36 +1, 4000, Liège, Belgium.
| |
Collapse
|
28
|
Wu H, Qin X, Dai H, Zhang Y. Time-course transcriptome analysis of medullary thymic epithelial cells in the early phase of thymic involution. Mol Immunol 2018; 99:87-94. [DOI: 10.1016/j.molimm.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/24/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
|
29
|
Liu S, Chan HL, Bai F, Ma J, Scott A, Robbins DJ, Capobianco AJ, Zhu P, Pei XH. Gata3 restrains B cell proliferation and cooperates with p18INK4c to repress B cell lymphomagenesis. Oncotarget 2018; 7:64007-64020. [PMID: 27588406 PMCID: PMC5325421 DOI: 10.18632/oncotarget.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
GATA3, a lineage specifier, controls lymphoid cell differentiation and its function in T cell commitment and development has been extensively studied. GATA3 promotes T cell specification by repressing B cell potential in pro T cells and decreased GATA3 expression is essential for early B cell commitment. Inherited genetic variation in GATA3 has been associated with lymphoma susceptibility. However, it remains elusive how the loss of function of GATA3 promotes B cell development and induces B cell lymphomas. In this study, we found that haploid loss of Gata3 by heterozygous germline deletion increased B cell populations in the bone marrow (BM) and spleen, and decreased CD4 T cell populations in the thymus, confirming that Gata3 promotes T and suppresses B cell development. We discovered that haploid loss of Gata3 reduced thymocyte proliferation with induction of p18Ink4c (p18), an inhibitor of CDK4 and CDK6, but enhanced B cell proliferation in the BM and spleen independent of p18. Loss of p18 partially restored Gata3 deficient thymocyte proliferation, but further stimulated Gata3 deficient B cell proliferation in the BM and spleen. Furthermore, we discovered that haploid loss of Gata3 in p18 deficient mice led to the development of B cell lymphomas that were capable of rapidly regenerating tumors when transplanted into immunocompromised mice. These results indicate that Gata3 deficiency promotes B cell differentiation and proliferation, and cooperates with p18 loss to induce B cell lymphomas. This study, for the first time, reveals that Gata3 is a tumor suppressor specifically in B cell lymphomagenesis.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China.,Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Ho Lam Chan
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Feng Bai
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Jinshan Ma
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Xinjiang Uigur Autonomous Region People's Hospital, Xinjiang, 830001, China
| | - Alexandria Scott
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Xin-Hai Pei
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| |
Collapse
|
30
|
Yuan JT, Gatti DM, Philip VM, Kasparek S, Kreuzman AM, Mansky B, Sharif K, Taterra D, Taylor WM, Thomas M, Ward JO, Holmes A, Chesler EJ, Parker CC. Genome-wide association for testis weight in the diversity outbred mouse population. Mamm Genome 2018; 29:310-324. [PMID: 29691636 DOI: 10.1007/s00335-018-9745-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
Testis weight is a genetically mediated trait associated with reproductive efficiency across numerous species. We sought to evaluate the genetically diverse, highly recombinant Diversity Outbred (DO) mouse population as a tool to identify and map quantitative trait loci (QTLs) associated with testis weight. Testis weights were recorded for 502 male DO mice and the mice were genotyped on the GIGAMuga array at ~ 143,000 SNPs. We performed a genome-wide association analysis and identified one significant and two suggestive QTLs associated with testis weight. Using bioinformatic approaches, we developed a list of candidate genes and identified those with known roles in testicular size and development. Candidates of particular interest include the RNA demethylase gene Alkbh5, the cyclin-dependent kinase inhibitor gene Cdkn2c, the dynein axonemal heavy chain gene Dnah11, the phospholipase D gene Pld6, the trans-acting transcription factor gene Sp4, and the spermatogenesis-associated gene Spata6, each of which has a human ortholog. Our results demonstrate the utility of DO mice in high-resolution genetic mapping of complex traits, enabling us to identify developmentally important genes in adult mice. Understanding how genetic variation in these genes influence testis weight could aid in the understanding of mechanisms of mammalian reproductive function.
Collapse
Affiliation(s)
- Joshua T Yuan
- Department of Computer Science, Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Daniel M Gatti
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Vivek M Philip
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Steven Kasparek
- Department of Psychology, Middlebury College, Middlebury, VT, 05753, USA
| | - Andrew M Kreuzman
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Benjamin Mansky
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Kayvon Sharif
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Dominik Taterra
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Walter M Taylor
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Mary Thomas
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Jeremy O Ward
- Department of Biology, Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), US National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elissa J Chesler
- The Jackson Laboratory, 610 Main Street, Bar Harbor, ME, 04609, USA
| | - Clarissa C Parker
- Department of Psychology, Middlebury College, Middlebury, VT, 05753, USA. .,Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|
31
|
Yu YW, Li MX, Zhang ZY, Yu H. The deficiency of CX3CL1/CX3CR1 system ameliorates high fructose diet-induced kidney injury by regulating NF-κB pathways in CX3CR1-knock out mice. Int J Mol Med 2018; 41:3577-3585. [PMID: 29568873 PMCID: PMC5881704 DOI: 10.3892/ijmm.2018.3573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/12/2018] [Indexed: 01/14/2023] Open
Abstract
Fructose, the most important functional food additive from the last century, has been widely used in industry, agriculture, light industry, food and medicine. With the improvement of people's living standard and economic level, excess intake of fructose results in metabolic symptoms, including hyperleptinemia, insulin resistance and neuroinflammation is causing high risk of chronic kidney disease development in humans and animals. However, the underlying molecular mechanism of renal injury is still not fully understood, and the development of effective drugs and treatments are delayed. Hence, we investigated the role of crosstalk of CX3CL1-CX3CR1 axis and nuclear factor-κB (NF-κB) signaling pathway in the development of renal injury. CX3CL1-knock-out C57BL/6 mice were constructed and used to analyze the influence of CX3CL1-related signaling pathways on kidney injury of wild-type (WT) mice and CXECR1 deficiency mice, which were administrated with 30% fructose water. Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, ELISA, flow cytometry and biochemical indicator analysis were used to determine the levels of renal injury and key signaling pathway associated with renal damage. The results indicated that administration of high fructose intake can cause typical renal inflammatory responses in serum and tissues. Fructose enhances the CX3CL1-CX3CR1 axis and NF-κB activation, and promotes crosstalk of CX3CL1-CX3CR1 and NF-κB pathways. The phosphorylated AKT could be significantly activated in fructose-induced renal injury via CX3CL1-CX3CR1 axis. CX3CR1 expression between WT and CX3CR1−/− mice were evaluated to establish their relationship with injury. Our results indicated that CX3CR1 may be the central and major indicator in the process of renal injury, which mediate AKT pathway and further enhance the NF-κB activation. These findings demonstrated that crosstalk of CX3CL1-CX3CR1 axis and NF-κB signaling pathway play a direct role in fructose-induced kidney injury. Inhibition of CX3CL1-CX3CR1 pathway may suppress renal-related diseases. It may be a potential treatment choice for the clinical diagnoses and treatment in the future.
Collapse
Affiliation(s)
- Yong-Wu Yu
- Department of Nephrology, Navy General Hospital of Chinese PLA, Beijing 100048, P.R. China
| | - Ming-Xu Li
- Department of Nephrology, Navy General Hospital of Chinese PLA, Beijing 100048, P.R. China
| | - Zhi-Yong Zhang
- Department of Nephrology, Navy General Hospital of Chinese PLA, Beijing 100048, P.R. China
| | - Hai Yu
- Department of Nephrology, Navy General Hospital of Chinese PLA, Beijing 100048, P.R. China
| |
Collapse
|
32
|
Roof AK, Gutierrez-Hartmann A. Consider the context: Ras/ERK and PI3K/AKT/mTOR signaling outcomes are pituitary cell type-specific. Mol Cell Endocrinol 2018; 463:87-96. [PMID: 28445712 DOI: 10.1016/j.mce.2017.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Conserved signaling pathways are critical regulators of pituitary homeostasis and, when dysregulated, contribute to adenoma formation. Pituitary adenomas are typically benign and rarely progress to malignant cancer. Pituitary and other neuroendocrine cell types often display non-proliferative responses to ERK and PI3K, in contrast to non-endocrine cell types which typically proliferate in response to ERK and PI3K activation. These differences likely contribute to the infrequent progression to malignancy in many endocrine tumors. In this review, we highlight the Ras/ERK and PI3K/AKT/mTOR signaling pathways in each pituitary cell type, as well as in other endocrine tissues. Furthermore, we provide evidence that a balance of ERK and PI3K signaling is required to maintain pituitary homeostasis. It is unlikely that one sole oncogene will be identified as being responsible for sporadic pituitary adenoma formation. This review emphasizes the necessity to consider endocrine cell-specific contexts and the interplay of signaling pathways to define the mechanisms underlying pituitary tumorigenesis.
Collapse
Affiliation(s)
- Allyson K Roof
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Arthur Gutierrez-Hartmann
- Program in Integrated Physiology and Reproductive Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
33
|
Host Tumor Suppressor p18 INK4c Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. J Virol 2018; 92:JVI.01604-17. [PMID: 29298882 DOI: 10.1128/jvi.01604-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/09/2017] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses are common viruses associated with lifelong infection and increased disease risk. Reactivation from latency aids the virus in maintaining infection throughout the life of the host and is responsible for a wide array of disease outcomes. Previously, we demonstrated that the virus-encoded cyclin (v-cyclin) of murine gammaherpesvirus 68 (γHV68) is essential for optimal reactivation from latency in normal mice but not in mice lacking the host tumor suppressor p18INK4c (p18). Whether p18 plays a cell-intrinsic or -extrinsic role in constraining reactivation remains unclear. Here, we generated recombinant viruses in which we replaced the viral cyclin with the cellular p18INK4c gene (p18KI) for targeted expression of p18, specifically within infected cells. We find that the p18KI virus is similar to the cyclin-deficient virus (cycKO) in lytic infection, establishment of latency, and infected cell reservoirs. While the cycKO virus is capable of reactivation in p18-deficient mice, expression of p18 from the p18KI virus results in a profound reactivation defect. These data demonstrate that p18 limits reactivation within latently infected cells, functioning in a cell-intrinsic manner. Further, the p18KI virus showed greater attenuation of virus-induced lethal pneumonia than the cycKO virus, indicating that p18 could further restrict γHV68 pathogenesis even in p18-sufficient mice. These studies demonstrate that host p18 imposes the requirement for the viral cyclin to reactivate from latency by functioning in latently infected cells and that p18 expression is associated with decreased disease, thereby identifying p18 as a compelling host target to limit chronic gammaherpesvirus pathogenesis.IMPORTANCE Gammaherpesviruses are ubiquitous viruses associated with multiple malignancies. The propensity to cycle between latency and reactivation results in an infection that is never cleared and often difficult to treat. Understanding the balance between latency and reactivation is integral to treating gammaherpesvirus infection and associated disease outcomes. This work characterizes the role of a novel inhibitor of reactivation, host p18INK4c, thereby bringing more clarity to a complex process with significant outcomes for infected individuals.
Collapse
|
34
|
Zalzali H, Rabeh W, Najjar O, Abi Ammar R, Harajly M, Saab R. Interplay between p53 and Ink4c in spermatogenesis and fertility. Cell Cycle 2018; 17:643-651. [PMID: 29334315 DOI: 10.1080/15384101.2017.1421874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressor p53, and the cyclin-dependent kinase inhibitor Ink4c, have been both implicated in spermatogenesis control. Both p53-/- and Ink4c-/- single knockout male mice are fertile, despite testicular hypertrophy, Leydig cell differentiation defect, and increased sperm count in Ink4c-/- males. To investigate their collaborative roles, we studied p53-/- Ink4c-/- dual knockout animals, and found that male p53-/- Ink4c-/- mice have profoundly reduced fertility. Dual knockout male mice show a marked decrease in sperm count, abnormal sperm morphology and motility, prolongation of spermatozoa proliferation and delay of meiosis entry, and accumulation of DNA damage. Genetic studies showed that the effects of p53 loss on fertility are independent of its downstream effector Cdkn1a. Absence of p53 also partially reverses the hyperplasia seen upon Ink4c loss, and normalizes the Leydig cell differentiation defect. These results implicate p53 in mitigating both the delayed entry into meiosis and the secondary apoptotic response that occur in the absence of Ink4c. We conclude that the cell cycle genes p53 and Ink4c collaborate in sperm cell development and differentiation, and may be important candidates to investigate in human male infertility conditions.
Collapse
Affiliation(s)
- Hassan Zalzali
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| | - Wissam Rabeh
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| | - Omar Najjar
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| | - Rami Abi Ammar
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| | - Mohamad Harajly
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| | - Raya Saab
- a Department of Pediatric and Adolescent Medicine , American University of Beirut Medical Center , Riad El Solh , Beirut 1107 2020 , Lebanon
| |
Collapse
|
35
|
Araki T, Liu NA. Cell Cycle Regulators and Lineage-Specific Therapeutic Targets for Cushing Disease. Front Endocrinol (Lausanne) 2018; 9:444. [PMID: 30147673 PMCID: PMC6096271 DOI: 10.3389/fendo.2018.00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022] Open
Abstract
Cell cycle proteins are critical to pituitary development, but their contribution to lineage-specific tumorigenesis has not been well-elucidated. Emerging evidence from in vitro human tumor analysis and transgenic mouse models indicates that G1/S-related cell cycle proteins, particularly cyclin E, p27, Rb, and E2F1, drive molecular mechanisms that underlie corticotroph-specific differentiation and development of Cushing disease. The aim of this review is to summarize the literature and discuss the complex role of cell cycle regulation in Cushing disease, with a focus on identifying potential targets for therapeutic intervention in patients with these tumors.
Collapse
Affiliation(s)
- Takako Araki
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Takako Araki
| | - Ning-Ai Liu
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
36
|
Dong W, Li J, Liu Q, Liu C, Li C, Song G, Zhu H, Gao H, Zhang Y. P21 Waf1/Cip1 and p27 Kip1 are correlated with the development and invasion of prolactinoma. J Neurooncol 2017; 136:485-494. [PMID: 29230669 DOI: 10.1007/s11060-017-2683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Cell cycle control can prevent excessive proliferative response in the pituitary homeostasis. Cyclin dependent kinases (Cdks) are modulated by cyclins or Cdk inhibitors, such as p21 and p27, which can regulate cell cycle progression from the G1 to S phases. This study was conducted to evaluate the levels and the promoter region methylation status of p21 and p27 in prolactinomas (PRL) and analyze their association with clinicopathologic features. We found high-p21 level cases were featured by 5/23 and H-scores 142.3 ± 23.7 in invasive-PRL specimens, and 19/25 and 221.3 ± 45.4 in non-invasive specimens (x2 = 14.11, p = 0.000), while high-p27 level cases were featured by 6/23 and H-scores 129.8 ± 31.1 in invasive-PRL specimens, and 18/25 and 197.1 ± 46.6 in non-invasive specimens (x2 = 10.11, p = 0.001). A similar trend was also observed for p21 and p27 protein levels in PRL specimens through western-blot (P < 0.01, respectively). The Ki-67 index was much higher in invasive specimens than in non-invasive specimens (x2 = 10.10, p = 0.001). Average 33 CpG sites per sample were analyzed by using MALDI-TOF Mass array, and 7/33 CpG sites methylation levels of p27 were higher than 50%. There existed significant differences in 4 CpG sites between invasive specimens and non-invasive specimens (p < 0.01). We found that D2 receptor was closely correlated with p21 levels (P < 0.05, r = 0.567) and p27 levels (P < 0.05, r = 0.591). In PRL, the deficiency in p21 and p27 contributed to the tumor proliferation and migration and Cdk inhibitors may be used as a new therapeutic approach.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China.,Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, China
| | - Jianhua Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Qian Liu
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Chunhui Liu
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Chuzhong Li
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Guidong Song
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Haibo Zhu
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Hua Gao
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China
| | - Yazhuo Zhang
- Key Laboratory of Central Nervous System Injury Research, Beijing Neurosurgical Institute, Capital Medical University, Tiantanxili 6#, Beijing, 100050, China.
| |
Collapse
|
37
|
Dreijerink KMA, Timmers HTM, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 2017; 24:T135-T145. [PMID: 28811299 PMCID: PMC5609455 DOI: 10.1530/erc-17-0281] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, elucidation of the molecular function of its protein product, menin, has been a challenge. Biochemical, proteomics, genetics and genomics approaches have identified various potential roles, which converge on gene expression regulation. The most consistent findings show that menin connects transcription factors and chromatin-modifying enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases. The current lack of appropriate cellular model systems for MEN1-associated tumors is a limitation for compound testing, which needs to be addressed in the near future. In this review, we look back at the past twenty years of research on menin and the mechanism of disease of MEN1. In addition, we discuss how the current understanding of the molecular function of menin offers future directions to develop novel treatments for MEN1-associated endocrine tumors.
Collapse
Affiliation(s)
- Koen M A Dreijerink
- Department of EndocrinologyVU University Medical Center, Amsterdam, The Netherlands
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) partner site FreiburgGerman Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Myles Brown
- Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
40
|
Wang L, Matkar S, Xie G, An C, He X, Kong X, Liu X, Hua X. BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells. Cancer Biol Ther 2017; 18:229-236. [PMID: 28281917 DOI: 10.1080/15384047.2017.1294291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevalence of neuroendocrine tumors (NETs) has recently been increasing. Although various drugs such as Octreotide and its analogs show certain efficacy, NETs in many patients progress and metastasize. It is desirable to develop new interventions to improve the therapy. Here we show that human neuroendocrine tumor BON cells are resistant to several drugs commonly used for NET therapy, including Octreotide that activates somatostatin receptor-induced anti-proliferation, and Capecitabine and Temozolimide that damage DNA. In contrast, an inhibitor (IBET) to an epigenetic regulator, Brd4 that binds acetylated histones and upregulates transcription of multiple genes including protooncogene c-Myc, potently inhibited the NET cells. We found that IBET increased the protein levels of cyclin-dependent kinase (CDK) inhibitor p27kip/cip (or p27), but not its mRNA levels. Moreover, the p27 induction at protein level by IBET was at least partly through increasing the protein stability of p27. The increased protein stability of p27 likely resulted from IBET-mediated suppression of Skp2, an E3 ligase that can mediate p27 degradation by increasing its ubiquitinylation. These findings unravel a new mechanism whereby the IBET-induced repression of proliferation of neuroendocrine cells.
Collapse
Affiliation(s)
- Lei Wang
- a Department of Urology , Renmin Hospital of Wuhan University , Wuhan , P.R. China.,b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Smita Matkar
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Gengchen Xie
- c Department of Gastrointestinal Surgery , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei , P.R. China
| | - Chiying An
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA.,d Department of Endocrinology and Metabolism , The First Affiliated Hospital of Harbin Medical University , Harbin , P.R. China
| | - Xin He
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Xiangchen Kong
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| | - Xiuheng Liu
- a Department of Urology , Renmin Hospital of Wuhan University , Wuhan , P.R. China
| | - Xianxin Hua
- b Abramson Family Cancer Research Institute, Department of Cancer Biology , Abramson Cancer Center, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
41
|
Wang X, Tan Y, Li Y, Li J, Jin W, Wang K. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia. Front Med 2016; 10:420-429. [PMID: 27888400 DOI: 10.1007/s11684-016-0478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Inappropriate cell proliferation during oncogenesis is often accompanied by inactivation of components involved in the cell cycle machinery. Here, we report that cyclin-dependent kinase inhibitor 2C (CDKN2C) as a member of the cyclin-dependent kinase inhibitors is a target of the PML/RARα oncofusion protein in leukemogenesis of acute promyelocytic leukemia (APL).We found that CDKN2C was markedly downregulated in APL blasts compared with normal promyelocytes. Chromatin immunoprecipitation combined with quantitative polymerase chain reaction demonstrated that PML/RARα directly bound to the CDKN2C promoter in the APL patient-derived cell line NB4. Luciferase assays indicated that PML/RARα inhibited the CDKN2C promoter activity in a dose-dependent manner. Furthermore, all-trans retinoic acid treatment induced CDKN2C expression by releasing the PML/RARα binding on chromatin in NB4 cells. Functional studies showed that ectopic expression of CDKN2C induced a cell cycle arrest at the G0/G1 phase and a partial differentiation in NB4 cells. Finally, the transcriptional regulation of CDKN2C was validated in primary APL patient samples. Collectively, this study highlights the importance of CDKN2C inactivation in the abnormal cell cycle progression and differentiation block of APL cells and may provide new insights into the study of pathogenesis and targeted therapy of APL.
Collapse
Affiliation(s)
- Xiaoling Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yizhen Li
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingming Li
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Jin
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China. .,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, China. .,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
42
|
Hao S, Chen C, Cheng T. Cell cycle regulation of hematopoietic stem or progenitor cells. Int J Hematol 2016; 103:487-97. [DOI: 10.1007/s12185-016-1984-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
|
43
|
Lines KE, Stevenson M, Thakker RV. Animal models of pituitary neoplasia. Mol Cell Endocrinol 2016; 421:68-81. [PMID: 26320859 PMCID: PMC4721536 DOI: 10.1016/j.mce.2015.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/21/2023]
Abstract
Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼ 30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
44
|
Schult D, Hölsken A, Siegel S, Buchfelder M, Fahlbusch R, Kreitschmann-Andermahr I, Buslei R. EZH2 is highly expressed in pituitary adenomas and associated with proliferation. Sci Rep 2015; 5:16965. [PMID: 26593398 PMCID: PMC4655333 DOI: 10.1038/srep16965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core epigenetic regulator, playing a crucial role in cell cycle regulation. The protein is known to be associated with proliferation and worse outcome in several tumor entities. In this study, we immunohistochemically investigated the expression pattern of EZH2 in a large cohort of pituitary tumors. These results were correlated with clinical features and double immunofluorescence stainings (DIS) were conducted to evaluate co-expression of EZH2 and proliferation marker Ki-67. Furthermore, we analyzed the effect of EZH2 inhibition on cell proliferation in vitro using the pituitary cell line AtT-20. While in the normal anterior pituitary EZH2 was almost absent, the cohort of tumors showed enhanced expression levels (p ≤ 0.0005). This was positively associated with Ki-67 indices (r = 0.834, p ≤ 0.0005) and DIF confirmed a predominant co-expression of both markers. In vitro experiments revealed a significant (p ≤ 0.05) decrease of tumor cell proliferation using the EZH2 inhibitor GSK126. Our results further support that epigenetic events are involved in the pathogenesis and biology of pituitary adenomas (PA). Therefore, EZH2 may function as a new potential target for therapeutic interventions in PA.
Collapse
Affiliation(s)
- David Schult
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Annett Hölsken
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Sonja Siegel
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen.,Department of Neurosurgery, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Rudolf Fahlbusch
- Department of Neurosurgery, International Neuroscience Institute, Rudolf-Pichlmayr-Straße 4, 30625 Hannover
| | - Ilonka Kreitschmann-Andermahr
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen.,Department of Neurosurgery, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen
| | - Rolf Buslei
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| |
Collapse
|
45
|
Quereda V, Porlan E, Cañamero M, Dubus P, Malumbres M. An essential role for Ink4 and Cip/Kip cell-cycle inhibitors in preventing replicative stress. Cell Death Differ 2015; 23:430-41. [PMID: 26292757 DOI: 10.1038/cdd.2015.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 01/31/2023] Open
Abstract
Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.
Collapse
Affiliation(s)
- V Quereda
- Cell Division and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - E Porlan
- Cell Division and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - M Cañamero
- Histopathology Unit, Biotechnology Programme, CNIO, Madrid, Spain
| | - P Dubus
- EA2406 Histology and Molecular Pathology of Tumours, University of Bordeaux 2, Bordeaux, France
| | - M Malumbres
- Cell Division and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
46
|
A Conserved Gammaherpesvirus Cyclin Specifically Bypasses Host p18(INK4c) To Promote Reactivation from Latency. J Virol 2015; 89:10821-31. [PMID: 26292318 DOI: 10.1128/jvi.00891-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Gammaherpesviruses (GHVs) carry homologs of cellular genes, including those encoding a viral cyclin that promotes reactivation from latent infection. The viral cyclin has reduced sensitivity to host cyclin-dependent kinase inhibitors in vitro; however, the in vivo significance of this is unclear. Here, we tested the genetic requirement for the viral cyclin in mice that lack the host inhibitors p27(Kip1) and p18(INK4c), two cyclin-dependent kinase inhibitors known to be important in regulating B cell proliferation and differentiation. While the viral cyclin was essential for reactivation in wild-type mice, strikingly, it was dispensable for reactivation in mice lacking p27(Kip1) and p18(INK4c). Further analysis revealed that genetic ablation of only p18(INK4c) alleviated the requirement for the viral cyclin for reactivation from latency. p18(INK4c) regulated reactivation in a dose-dependent manner so that the viral cyclin was dispensable in p18(INK4c) heterozygous mice. Finally, treatment of wild-type cells with the cytokine BAFF, a known attenuator of p18(INK4c) function in B lymphocytes, was also able to bypass the requirement for the viral cyclin in reactivation. These data show that the gammaherpesvirus viral cyclin functions specifically to bypass the cyclin-dependent kinase inhibitor p18(INK4c), revealing an unanticipated specificity between a GHV cyclin and a single cyclin-dependent kinase inhibitor. IMPORTANCE The gammaherpesviruses (GHVs) cause lifelong infection and can cause chronic inflammatory diseases and cancer, especially in immunosuppressed individuals. Many GHVs encode a conserved viral cyclin that is required for infection and disease. While a common property of the viral cyclins is that they resist inhibition by normal cellular mechanisms, it remains unclear how important it is that the GHVs resist this inhibition. We used a mouse GHV that either contained or lacked a viral cyclin to test whether the viral cyclin lost importance when these inhibitory pathways were removed. These studies revealed that the viral cyclin was required for optimal function in normal mice but that it was no longer required following removal or reduced function of a single cellular inhibitor. These data define a very specific role for the viral cyclin in bypassing one cellular inhibitor and point to new methods to intervene with viral cyclins.
Collapse
|
47
|
Roy A, Manikkam R. Cytotoxic Impact of Costunolide Isolated from Costus speciosus on Breast Cancer via Differential Regulation of Cell Cycle-An In-vitro and In-silico Approach. Phytother Res 2015; 29:1532-9. [PMID: 26178525 DOI: 10.1002/ptr.5408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Costunolide, a sesquiterpene lactone, is a biologically active molecule found in most of the medicinally valuable plants. The present study aims to evaluate the anticancer property of costunolide isolated from Costus speciosus against breast cancer cell lines (MCF-7 and MDA-MB-231). Costunolide effectively reduced the viability of both MCF-7 and MDA-MB-231 cell lines at an IC50 value of 40 μM. Flow cytometric analysis revealed costunolide mediated cell cycle arrest at G2/M phase in both the cell types. Western blotting results confirmed the alterations in the expression of cell cycle regulators (cyclin D1, D3, CDK-4, CDK-6, p18 INK4c, p21 CIP1/Waf-1 and p27 KIP1) and apoptosis inducers (caspase-3 and caspase-9) upon costunolide treatment in comparison with their expressions in normal breast cell line (MCF-10A). Costunolide mediated downregulation of positive cell cycle regulators and upregulation of negative cell cycle regulators were related to the induction of apoptosis in cancer cells. The above results were validated with in-silico results that predicted stable interactions between costunolide and cancer targets. Thus costunolide effectively induced breast cancer cell apoptosis targeting cell cycle regulation, and the compound can be used as an effective herbal therapeutic molecule to treat breast cancer with further explorations.
Collapse
Affiliation(s)
- Anita Roy
- Holy Cross College-PG and Research Department of Biotechnology and Bioinformatics, Tiruchirappalli, Tamil Nadu, India
| | - Rajalakshmi Manikkam
- Holy Cross College-PG and Research Department of Biotechnology and Bioinformatics, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
48
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
49
|
D'Angelo D, Esposito F, Fusco A. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas. Front Med (Lausanne) 2015; 2:39. [PMID: 26137461 PMCID: PMC4469109 DOI: 10.3389/fmed.2015.00039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023] Open
Abstract
Overexpression of the high-mobility group A (HMGA)1 and HMGA2 proteins is a feature of all human pituitary adenoma (PAs) subtypes. However, amplification and/or rearrangement of the HMGA2 have been described in human prolactinomas, but rarely in other pituitary subtypes, and no genomic amplification of HMGA1 was detected in PAs. Here, we summarize the functional role of HMGA proteins in pituitary tumorigenesis and the epigenetic mechanisms contributing to HMGA overexpression in these tumors focusing on recent studies indicating a critical role of non-coding RNAs in modulating HMGA protein levels.
Collapse
Affiliation(s)
- Daniela D'Angelo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Francesco Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Alfredo Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer - INCA , Rio de Janeiro, Rio de Janeiro , Brazil
| |
Collapse
|
50
|
Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27(KIP1). Tumour Biol 2015; 36:6909-17. [PMID: 25851349 DOI: 10.1007/s13277-015-3397-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/25/2015] [Indexed: 12/20/2022] Open
Abstract
Mineral dust-induced gene (mdig) can accelerate cell proliferation. The aim of this study is to investigate the mechanism by which mdig regulates cell proliferation. A549 cells were transfected with siRNA specifically targeting mdig. Cell proliferation and cell cycle progression were measured using MTT assay and cell cycle analysis, respectively. Furthermore, real-time reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was performed in A549 cells transfected with mdig siRNA to examine the expression levels of the cell cycle related genes such as p18(INK4c), p19(INK4d), p21(WAF/CIP1), p27(KIP1), p57(KIP2), cyclin D1, and cyclin E. To further explore the effect of mdig on p27(KIP1), the expression levels of total p27(KIP1) and its subtypes pT187-p27(KIP1) and pS10-p27(KIP1) were assessed by Western blotting. In vivo, Western blotting was performed to check the expression levels of mdig and p27(KIP1) in human lung cancer tissues, para-cancerous normal lung tissues, and para-bronchial stumps. Knockdown of mdig induced increases in p27(KIP1), both on mRNA and protein levels. Furthermore, the phosphorylation of p27(KIP1) at its Thr187 site was also inhibited. Importantly, in lung cancer tissues, upregulation of mdig expression accompanies with the downregulation of p27(KIP1) expression and in bronchial stump, vice versa. The data suggest that mdig-mediated inhibition of p27(KIP1) is important for cell proliferation and tumor formation and reveal therapeutic potential of p27(KIP1) for lung cancer.
Collapse
|