1
|
Mishra R, Upadhyay A, Prajapati VK, Dhiman R, Poluri KM, Jana NR, Mishra A. LRSAM1 E3 ubiquitin ligase: molecular neurobiological perspectives linked with brain diseases. Cell Mol Life Sci 2019; 76:2093-2110. [PMID: 30826859 PMCID: PMC11105512 DOI: 10.1007/s00018-019-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Cellular protein quality control (PQC) plays a significant role in the maintenance of cellular homeostasis. Failure of PQC mechanism may lead to various neurodegenerative diseases due to accumulation of aberrant proteins. To avoid such fatal neuronal conditions PQC employs autophagy and ubiquitin proteasome system (UPS) to degrade misfolded proteins. Few quality control (QC) E3 ubiquitin ligases interplay an important role to specifically recognize misfolded proteins for their intracellular degradation. Leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1) is a really interesting new gene (RING) class protein that possesses E3 ubiquitin ligase activity with promising applications in PQC. LRSAM1 is also known as RING finger leucine repeat rich (RIFLE) or TSG 101-associated ligase (TAL). LRSAM1 has various cellular functions as it modulates the protein aggregation, endosomal sorting machinery and virus egress from the cells. Thus, this makes LRSAM1 interesting to study not only in protein conformational disorders such as neurodegeneration but also in immunological and other cancerous disorders. Furthermore, LRSAM1 interacts with both cellular protein degradation machineries and hence it can participate in maintenance of overall cellular proteostasis. Still, more research work on the quality control molecular functions of LRSAM1 is needed to comprehend its roles in various protein aggregatory diseases. Earlier findings suggest that in a mouse model of Charcot-Marie-Tooth (CMT) disease, lack of LRSAM1 functions sensitizes peripheral axons to degeneration. It has been observed that in CMT the patients retain dominant and recessive mutations of LRSAM1 gene, which encodes most likely a defective protein. However, still the comprehensive molecular pathomechanism of LRSAM1 in neuronal functions and neurodegenerative diseases is not known. The current article systematically represents the molecular functions, nature and detailed characterization of LRSAM1 E3 ubiquitin ligase. Here, we review emerging molecular mechanisms of LRSAM1 linked with neurobiological functions, with a clear focus on the mechanism of neurodegeneration and also on other diseases. Better understanding of LRSAM1 neurobiological and intracellular functions may contribute to develop promising novel therapeutic approaches, which can also propose new lines of molecular beneficial targets for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
2
|
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017; 10:151. [PMID: 28579943 PMCID: PMC5437216 DOI: 10.3389/fnmol.2017.00151] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
3
|
|
4
|
Wong JYY, De Vivo I, Lin X, Christiani DC. Cumulative PM(2.5) exposure and telomere length in workers exposed to welding fumes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:441-55. [PMID: 24627998 PMCID: PMC4072226 DOI: 10.1080/15287394.2013.875497] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Telomeres are genomic structures that reflect both mitotic history and biochemical trauma to the genome. Metals inherent in fine particulate matter (PM(2.5)) were shown to be genotoxic via oxidative damage. However, few studies investigated the induction time of cumulative PM(2.5) exposure on telomere length in a longitudinal setting. Therefore, the purpose of this study was to assess the association between occupational PM(2.5) exposure in various time windows and telomere length. The study population consisted of 48 boilermakers and the follow-up period was 8 yr. The main exposures were cumulative occupational PM(2.5) in the month, year, and career prior to each blood draw, assessed via work history questionnaires and area air measures. Repeated telomere length measurements from leukocytes were assessed via real-time qualitative polymerase chain reaction (qPCR). Analysis was performed using linear mixed models controlling for confounders and white blood cell differentials. Cumulative PM(2.5) exposure was treated continuously and categorized into quartiles, in separate analyses. At any follow-up time, for each milligram per cubic meter per hour increase in cumulative PM(2.5) exposure in the prior month, there was a statistically significant decrease in relative telomere length of -0.04 units. When categorizing the exposure into quartiles, there was a significant negative association between telomere length and highest quartile of cumulative PM(2.5) exposure in the prior month (-0.16). These findings suggest that genomic trauma to leukocyte telomeres was more consistent with recent occupational PM(2.5) exposure, as opposed to cumulative exposure extending into the distant past.
Collapse
Affiliation(s)
- Jason Y. Y. Wong
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of
Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard School of Public
Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public
Health, Boston, Massachusetts, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard School of
Public Health, Boston, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
- Massachusetts General Hospital, Boston, Massachusetts,
USA
| |
Collapse
|
5
|
The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol 2011; 12:399-407. [PMID: 21478879 DOI: 10.1038/ni.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/14/2011] [Indexed: 12/17/2022]
Abstract
Although hematopoietic stem cells (HSCs) are the most thoroughly characterized type of adult stem cell, the intricate molecular machinery that regulates their self-renewal properties remains elusive. Here we showed that the E3 ubiquitin ligase Itch negatively regulated the development and function of HSCs. Itch(-/-) mice had HSCs with enhanced frequency, competence and long-term repopulating activity. Itch-deficient HSCs showed accelerated proliferation rates and sustained progenitor properties, as well as more signaling by the transcription factor Notch1, due to more accumulation of activated Notch1. Knockdown of Notch1 in Itch-mutant HSCs resulted in reversion of the phenotype. Thus, we identify Itch as a previously unknown negative regulator of HSC homeostasis and function.
Collapse
|
6
|
Pati S, Kalra OP, Mukhopadhyay A. Foe turned friend: multiple functional roles attributable to hyper-activating stem cell factor receptor mutant in regeneration of the haematopoietic cell compartment. Cell Prolif 2011; 44:10-8. [PMID: 21199006 PMCID: PMC6496452 DOI: 10.1111/j.1365-2184.2010.00713.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Stem cell factor receptor, c-kit, is considered to be the master signalling molecule of haematopoietic stem cells. It develops the orchestral pattern of haematopoietic cell lineages, seen by its varying degree of omnipresence in progenitors, lineage committed and mature cells. We have investigated the effect of over-expressing c-kit on early recovery of the haematopoietic compartment, in irradiated hosts. MATERIALS AND METHODS Normal bone marrow cells (BMCs) were transfected with Kit(wt) (wild-type c-kit) or its variant Kit(mu) (asp814tyr) by electroporation. Lethally irradiated mice were transplanted with normal or transfected congeneic BMCs. The effect of ectopic expression of c-kit on haematopoietic cell recovery was determined by analysing donor-derived cells. Furthermore, effects of both types of c-kit over-expression on progenitor and lineage-committed cells were examined by flow cytometric analysis of Sca-1 and lineage-committed (Lin(+)) cells respectively. RESULTS Hyper-activating Kit(mu) significantly improved recovery of the haematopoietic system in irradiated hosts. In vivo results showed that the donor-derived c-kit(+) cell population was increased to more than 3-fold in the case of Kit(mu)-transfected cells compared to normal and Kit(wt) over-expressing BMCs. In general, survival of progenitor and committed cell was improved in the Kit(mu) over-expressing system compared to the other two cohorts. CONCLUSION These results suggest that recruitment of the hyper-activating variant of c-kit (Kit(mu)) lead to early recovery of the bone marrow of lethally irradiated mice.
Collapse
Affiliation(s)
- S Pati
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
7
|
Rathinam C, Thien CBF, Flavell RA, Langdon WY. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 2010; 18:341-52. [PMID: 20951944 DOI: 10.1016/j.ccr.2010.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/07/2010] [Accepted: 08/19/2010] [Indexed: 01/22/2023]
Abstract
Although myeloid leukemias are primarily caused by leukemic stem cells, the molecular basis of their transformation remains largely unknown. Here, by analyzing mice with a mutation in the RING finger domain of c-Cbl, we show that the E3 ubiquitin ligase activity of c-Cbl is required to restrict myeloid leukemia development. These mice develop a myeloproliferative disease which progresses to leukemia and involves hematopoietic progenitors that exhibit augmented FLT3 signaling. Suppressing this signaling through matings with FLT3 ligand knockout mice prevents leukemia development. We also observe enhanced c-Kit, Akt and Erk activity, and deregulated expression of leukemia-associated transcription factors in hematopoietic progenitors. The characterization of these perturbations provides direction for therapeutics that may aid the treatment of patients with c-Cbl mutations.
Collapse
Affiliation(s)
- Chozhavendan Rathinam
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
8
|
Differential modulation of TCF/LEF-1 activity by the soluble LRP6-ICD. PLoS One 2010; 5:e11821. [PMID: 20676368 PMCID: PMC2911377 DOI: 10.1371/journal.pone.0011821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/05/2010] [Indexed: 12/28/2022] Open
Abstract
The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions.
Collapse
|
9
|
c-Cbl deficiency leads to diminished lymphocyte development and functions in an age-dependent manner. Proc Natl Acad Sci U S A 2010; 107:8316-21. [PMID: 20404156 DOI: 10.1073/pnas.0914496107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is broadly defined as a progressive decline of tissue and organ functions due to deregulation of various cell intrinsic and extrinsic factors. In the immune system, aging preferentially affects lymphopoiesis and thus results in the reduced competence of the adaptive immune system in the elderly. Despite recent discoveries that shed light on the molecular basis of aging, pathways that lead to diminished lymphoid development in aging individuals remain largely unknown. In the present study, we document that a deficiency of the E3 ubiquitin ligase c-Cbl in lymphocytes results in an age-dependent lymphopenia. c-Cbl-deficient mice show normal frequencies of lymphocytes at 12 weeks of age; however, their development and functions were remarkably diminished at 24 weeks after birth. Intriguingly, c-Cbl mutant lymphocytes displayed increased responses to IL7 in vitro and failed to down-regulate surface levels of IL7Ralpha. Further, our biochemical studies have identified an interaction of c-Cbl with IL7Ralpha and have unraveled the involvement of c-Cbl in the ubiquitylation of IL7Ralpha. In essence, our studies demonstrate that a lack of signaling events mediated by c-Cbl might result in diminished lymphocyte development and functions, particularly, at the later stages of life.
Collapse
|