1
|
Morozov VM, Riva A, Sarwar S, Kim WJ, Li J, Zhou L, Licht J, Daaka Y, Ishov A. HIRA-mediated loading of histone variant H3.3 controls androgen-induced transcription by regulation of AR/BRD4 complex assembly at enhancers. Nucleic Acids Res 2023; 51:10194-10217. [PMID: 37638746 PMCID: PMC10602887 DOI: 10.1093/nar/gkad700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Incorporation of histone variant H3.3 comprises active territories of chromatin. Exploring the function of H3.3 in prostate cancer (PC), we found that knockout (KO) of H3.3 chaperone HIRA suppresses PC growth in vitro and in xenograft settings, deregulates androgen-induced gene expression and alters androgen receptor (AR) binding within enhancers of target genes. H3.3 affects transcription in multiple ways, including activation of p300 by phosphorylated H3.3 at Ser-31 (H3.3S31Ph), which results in H3K27 acetylation (H3K27Ac) at enhancers. In turn, H3K27Ac recruits bromodomain protein BRD4 for enhancer-promoter interaction and transcription activation. We observed that HIRA KO reduces H3.3 incorporation, diminishes H3.3S31Ph and H3K27Ac, modifies recruitment of BRD4. These results suggest that H3.3-enriched enhancer chromatin serves as a platform for H3K27Ac-mediated BRD4 recruitment, which interacts with and retains AR at enhancers, resulting in transcription reprogramming. In addition, HIRA KO deregulates glucocorticoid- (GR) driven transcription of genes co-regulated by AR and GR, suggesting a common H3.3/HIRA-dependent mechanism of nuclear receptors function. Expression of HIRA complex proteins is increased in PC compared with normal prostate tissue, especially in high-risk PC groups, and is associated with a negative prognosis. Collectively, our results demonstrate function of HIRA-dependent H3.3 pathway in regulation of nuclear receptors activity.
Collapse
Affiliation(s)
- Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wan-Ju Kim
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jianping Li
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lei Zhou
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
2
|
Morozov VM, Riva A, Sarwar S, Kim W, Li J, Zhou L, Licht JD, Daaka Y, Ishov AM. HIRA-mediated loading of histone variant H3.3 controls androgen-induced transcription by regulation of AR/BRD4 complex assembly at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.536256. [PMID: 37214820 PMCID: PMC10197601 DOI: 10.1101/2023.05.08.536256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Incorporation of histone variant H3.3 comprises active territories of chromatin. Exploring the function of H3.3 in prostate cancer (PC), we found that knockout (KO) of H3.3 chaperone HIRA suppresses PC growth in vitro and in xenograft settings, deregulates androgen-induced gene expression and alters androgen receptor (AR) binding within enhancers of target genes. H3.3 affects transcription in multiple ways, including activation of p300 by phosphorylated H3.3 at Ser-31 (H3.3S31Ph), which results in H3K27 acetylation (H3K27Ac) at enhancers. In turn, H3K27Ac recruits bromodomain protein BRD4 for enhancer-promoter interaction and transcription activation. We observed that HIRA KO reduces H3.3 incorporation, diminishes H3.3S31Ph and H3K27Ac, modifies recruitment of BRD4. These results suggest that H3.3-enriched enhancer chromatin serves as a platform for H3K27Ac-mediated BRD4 recruitment, which interacts with and retains AR at enhancers, resulting in transcription reprogramming. AR KO reduced levels of H3.3 at enhancers, indicating feedback mechanism. In addition, HIRA KO deregulates glucocorticoid-driven transcription, suggesting a common H3.3/HIRA-dependent mechanism of nuclear receptors function. Expression of HIRA complex proteins is increased in PC compared with normal prostate tissue, especially in high-risk PC groups, and is associated with a negative prognosis. Collectively, our results demonstrate function of HIRA-dependent H3.3 pathway in regulation of nuclear receptors activity. Key points *H3.3 at enhancers promotes acetylation of H3K27Ac and retention of AR/BRD4 complex for transcription regulation*Knockout of H3.3 chaperone HIRA suppresses PC cells growth and deregulates androgen-induced transcription*H3.3/HIRA pathway regulates both AR and GR, suggesting a common HIRA/H3.3 mechanism of nuclear receptors function.
Collapse
|
3
|
Fernandes De Abreu DA, Salinas-Giegé T, Drouard L, Remy JJ. Alanine tRNAs Translate Environment Into Behavior in Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:571359. [PMID: 33195203 PMCID: PMC7662486 DOI: 10.3389/fcell.2020.571359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans nematodes produce and maintain imprints of attractive chemosensory cues to which they are exposed early in life. Early odor-exposure increases adult chemo-attraction to the same cues. Imprinting is transiently or stably inherited, depending on the number of exposed generations. We show here that the Alanine tRNA (UGC) plays a central role in regulating C. elegans chemo-attraction. Naive worms fed on tRNAAla (UGC) purified from odor-experienced worms, acquire odor-specific imprints. Chemo-attractive responses require the tRNA-modifying Elongator complex sub-units 1 (elpc-1) and 3 (elpc-3) genes. elpc-3 deletions impair chemo-attraction, which is fully restored by wild-type tRNAAla (UGC) feeding. A stably inherited decrease of odor-specific responses ensues from early odor-exposition of elpc-1 deletion mutants. tRNAAla (UGC) may adopt various chemical forms to mediate the cross-talk between innately-programmed and environment-directed chemo-attractive behavior.
Collapse
Affiliation(s)
- Diana Andrea Fernandes De Abreu
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| | - Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Jacques Remy
- Genes, Environment, Plasticity, Institut Sophia Agrobiotech ISA UMR CNRS 7254, INRAE 1355, Université Nice Côte d’Azur, Sophia-Antipolis, France
| |
Collapse
|
4
|
Maree JP, Patterton HG. The epigenome of Trypanosoma brucei: a regulatory interface to an unconventional transcriptional machine. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:743-50. [PMID: 24942804 DOI: 10.1016/j.bbagrm.2014.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Abstract
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function. Trypanosomes, an ancient branch of the eukaryotic evolutionary lineage, exhibit some highly unusual transcriptional features, including the arrangement of functionally unrelated genes in large, polymerase II transcribed polycistronic transcription units, often exceeding hundreds of kilobases in size. It is generally believed that transcription initiation plays a minor role in regulating the transcript level of genes in trypanosomes, which are mainly regulated post-transcriptionally. Recent advances have revealed that epigenetic mechanisms play an essential role in the transcriptional regulation of Trypanosoma brucei. This suggested that the modulation of gene activity, particularly that of pol I transcribed genes, is, indeed, an important control mechanism, and that the epigenome is critical in regulating gene expression programs that allow the successful migration of this parasite between hosts, as well as the continuous evasion of the immune system in mammalian hosts. A wide range of epigenetic signals, readers, writers and erasers have been identified in trypanosomes, some of which have been mapped to essential genetic functions. Some epigenetic mechanisms have also been observed to be unique to trypanosomes. We review recent advances in our understanding of epigenetic control mechanisms in T. brucei, the causative agent of African sleeping sickness, and highlight the utility of epigenetic targets in the possible development of new therapies for human African trypanosomiasis.
Collapse
Affiliation(s)
- Johannes P Maree
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa
| | - Hugh-G Patterton
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa.
| |
Collapse
|
5
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|
6
|
Abstract
The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with most nutrient uptake occurring in the privileged location of the flagellar pocket. In addition, trypanosomes show extremely high rates of recycling of a protective VSG (variant surface glycoprotein) coat, whereby host antibodies are stripped off of the VSG before it is re-used. VSG recycling therefore functions as a mechanism for cleaning the VSG coat, allowing trypanosomes to survive in low titres of anti-VSG antibodies. Lastly, T. brucei has developed an extremely sophisticated strategy of antigenic variation of its VSG coat allowing it to evade host antibodies. A single trypanosome has more than 1500 VSG genes, most of which are located in extensive silent arrays. Strikingly, most of these silent VSGs are pseudogenes, and we are still in the process of trying to understand how non-intact VSGs are recombined to produce genes encoding functional coats. Only one VSG is expressed at a time from one of approximately 15 telomeric VSG ES (expression site) transcription units. It is becoming increasingly clear that chromatin remodelling must play a critical role in ES control. Hopefully, a better understanding of these unique trypanosome adaptations will eventually allow us to disrupt their ability to multiply in the mammalian bloodstream.
Collapse
|
7
|
Abstract
Trypanosomatids are protozoan micro-organisms that cause serious health problems in humans and domestic animals. In addition to their medical relevance, these pathogens have novel biological structures and processes. From nuclear DNA transcription to mRNA translation, trypanosomes use unusual mechanisms to control gene expression. For example, transcription by RNAPII (RNA polymerase II) is polycistronic, and only a few transcription initiation sites have been identified so far. The sequences present in the polycistronic units code for proteins having unrelated functions, that is, not involved in a similar metabolic pathway. Owing to these biological constraints, these micro-organisms regulate gene expression mostly by post-transcriptional events. Consequently, the function of proteins that recognize RNA elements preferentially at the 3' UTR (untranslated region) of transcripts is central. It was recently shown that mRNP (messenger ribonucleoprotein) complexes are organized within post-transcriptional operons to co-ordinately regulate gene expression of functionally linked transcripts. In the present chapter we will focus on particular characteristics of gene expression in the so-called TriTryp parasites: Trypanosoma cruzi, Trypanosoma brucei and Leishmania major.
Collapse
|
8
|
On T, Xiong X, Pu S, Turinsky A, Gong Y, Emili A, Zhang Z, Greenblatt J, Wodak SJ, Parkinson J. The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 2010; 78:2075-89. [PMID: 20455264 DOI: 10.1002/prot.22723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Model organisms such as yeast, fly, and worm have played a defining role in the study of many biological systems. A significant challenge remains in translating this information to humans. Of critical importance is the ability to differentiate those components where knowledge of function and interactions may be reliably inferred from those that represent lineage-specific innovations. To address this challenge, we use chromatin modification (CM) as a model system for exploring the evolutionary properties of their components in the context of their known functions and interactions. Collating previously identified components of CM from yeast, worm, fly, and human, we identified a "core" set of 50 CM genes displaying consistent orthologous relationships that likely retain their interactions and functions across taxa. In addition, we catalog many components that demonstrate lineage specific expansions and losses, highlighting much duplication within vertebrates that may reflect an expanded repertoire of regulatory mechanisms. Placed in the context of a high-quality protein-protein interaction network, we find, contrary to existing views of evolutionary modularity, that CM complex components display a mosaic of evolutionary histories: a core set of highly conserved genes, together with sets displaying lineage specific innovations. Although focused on CM, this study provides a template for differentiating those genes which are likely to retain their functions and interactions across species. As such, in addition to informing on the evolution of CM as a system, this study provides a set of comparative genomic approaches that can be generally applied to any biological systems.
Collapse
Affiliation(s)
- Tuan On
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The African trypanosome Trypanosoma brucei is a unicellular parasite which causes African sleeping sickness. Transcription in African trypanosomes displays some unusual features, as most of the trypanosome genome is transcribed as extensive polycistronic RNA Pol II (polymerase II) transcription units that are not transcriptionally regulated. In addition, RNA Pol I is used for transcription of a small subset of protein coding genes in addition to the rDNA (ribosomal DNA). These Pol I-transcribed protein coding genes include the VSG (variant surface glycoprotein) genes. Although a single trypanosome has many hundreds of VSG genes, the active VSG is transcribed in a strictly monoalleleic fashion from one of approx. 15 telomeric VSG ESs (expression sites). Originally, it was thought that chromatin was not involved in the transcriptional control of ESs; however, this view is now being re-evaluated. It has since been shown that the active ES is depleted of nucleosomes compared with silent ESs. In addition, a number of proteins involved in chromatin remodelling or histone modification and which play a role in ES silencing {including TbISWI [T. brucei ISWI (imitation-switch protein)] and DOT1B} have recently been identified. Lastly, the telomere-binding protein TbRAP1 (T. brucei RAP1) has been shown to establish a repressive gradient extending from the ES telomere end up to the ES promoter. We still need to determine which epigenetic factors are involved in ‘marking’ the active ES as part of the counting mechanism of monoallelic exclusion. The challenge will come in determining how these multiple regulatory layers contribute to ES control.
Collapse
|
10
|
Prohaska SJ, Stadler PF, Krakauer DC. Innovation in gene regulation: The case of chromatin computation. J Theor Biol 2010; 265:27-44. [DOI: 10.1016/j.jtbi.2010.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
|
11
|
Fernández-Moya SM, Estévez AM. Posttranscriptional control and the role of RNA-binding proteins in gene regulation in trypanosomatid protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:34-46. [PMID: 21956905 DOI: 10.1002/wrna.6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Trypanosomatids are unicellular eukaryotes responsible for severe diseases in humans. They exhibit a number of remarkable biological phenomena, especially at the RNA level. During their life cycles, they alternate between a mammalian host and an insect vector and undergo profound biochemical and morphological transformations in order to adapt to the different environments they find within one or the other host species. These changes are orchestrated by specific gene expression programs. In contrast to other organisms, trypanosomatids do not regulate RNA polymerase II-dependent transcription initiation. Evidence so far indicates that the main control points in gene expression are mRNA degradation and translation. Recent studies have shown that RNA-binding proteins (RBPs) play a critical role in the developmental regulation of mRNA and protein abundance. RBPs seem to bind to specific subsets of mRNAs encoding functionally related proteins. These ribonucleoprotein complexes may represent posttranscriptional operons or regulons that are able to control the fate of multiple mRNAs simultaneously. We suggest that trypanosomatids transduce environmental signals into mRNA and protein abundance through posttranslational modification of RBPs.
Collapse
Affiliation(s)
- Sandra M Fernández-Moya
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Avenida del Conocimiento, s/n, 18100 Armilla, Granada, Spain
| | | |
Collapse
|
12
|
Bermudez-Santana C, Attolini CSO, Kirsten T, Engelhardt J, Prohaska SJ, Steigele S, Stadler PF. Genomic organization of eukaryotic tRNAs. BMC Genomics 2010; 11:270. [PMID: 20426822 PMCID: PMC2888827 DOI: 10.1186/1471-2164-11-270] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/28/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Surprisingly little is known about the organization and distribution of tRNA genes and tRNA-related sequences on a genome-wide scale. While tRNA gene complements are usually reported in passing as part of genome annotation efforts, and peculiar features such as the tandem arrangements of tRNA gene in Entamoeba histolytica have been described in some detail, systematic comparative studies are rare and mostly restricted to bacteria. We therefore set out to survey the genomic arrangement of tRNA genes and pseudogenes in a wide range of eukaryotes to identify common patterns and taxon-specific peculiarities. RESULTS In line with previous reports, we find that tRNA complements evolve rapidly and tRNA gene and pseudogene locations are subject to rapid turnover. At phylum level, the distributions of the number of tRNA genes and pseudogenes numbers are very broad, with standard deviations on the order of the mean. Even among closely related species we observe dramatic changes in local organization. For instance, 65% and 87% of the tRNA genes and pseudogenes are located in genomic clusters in zebrafish and stickleback, resp., while such arrangements are relatively rare in the other three sequenced teleost fish genomes. Among basal metazoa, Trichoplax adherens has hardly any duplicated tRNA gene, while the sea anemone Nematostella vectensis boasts more than 17000 tRNA genes and pseudogenes. Dramatic variations are observed even within the eutherian mammals. Higher primates, for instance, have 616 +/- 120 tRNA genes and pseudogenes of which 17% to 36% are arranged in clusters, while the genome of the bushbaby Otolemur garnetti has 45225 tRNA genes and pseudogenes of which only 5.6% appear in clusters. In contrast, the distribution is surprisingly uniform across plant genomes. Consistent with this variability, syntenic conservation of tRNA genes and pseudogenes is also poor in general, with turn-over rates comparable to those of unconstrained sequence elements. Despite this large variation in abundance in Eukarya we observe a significant correlation between the number of tRNA genes, tRNA pseudogenes, and genome size. CONCLUSIONS The genomic organization of tRNA genes and pseudogenes shows complex lineage-specific patterns characterized by an extensive variability that is in striking contrast to the extreme levels of sequence-conservation of the tRNAs themselves. The comprehensive analysis of the genomic organization of tRNA genes and pseudogenes in Eukarya provides a basis for further studies into the interplay of tRNA gene arrangements and genome organization in general.
Collapse
Affiliation(s)
- Clara Bermudez-Santana
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Department of Biology, Universidad Nacional de Colombia. Carrera45 # 26-85 - Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| | - Camille Stephan-Otto Attolini
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Biostatistics and Bioinformatics unit, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Toralf Kirsten
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Sonja J Prohaska
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraß 22 D-04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
| |
Collapse
|
13
|
Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010; 140:678-91. [PMID: 20211137 DOI: 10.1016/j.cell.2010.01.003] [Citation(s) in RCA: 979] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/23/2009] [Accepted: 12/31/2009] [Indexed: 12/17/2022]
Abstract
The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.
Collapse
|
14
|
Abstract
Histones wrap DNA to form nucleosome particles that compact eukaryotic genomes. Variant histones have evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, sperm packaging and other processes. 'Universal' histone variants emerged early in eukaryotic evolution and were later displaced for bulk packaging roles by the canonical histones (H2A, H2B, H3 and H4), the synthesis of which is coupled to DNA replication. Further specializations of histone variants have evolved in some lineages to perform additional tasks. Differences among histone variants in their stability, DNA wrapping, specialized domains that regulate access to DNA, and post-translational modifications, underlie the diverse functions that histones have acquired in evolution.
Collapse
|
15
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
16
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|