1
|
Bacon EE, Myers KS, Iruegas-López R, Banta AB, Place M, Ebersberger I, Peters JM. Physiological Roles of an Acinetobacter-specific σ Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602572. [PMID: 39026751 PMCID: PMC11257525 DOI: 10.1101/2024.07.08.602572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is considered an "urgent threat" to human health due to its propensity to become antibiotic resistant. Understanding the distinct regulatory paradigms used by A. baumannii to mitigate cellular stresses may uncover new therapeutic targets. Many γ-proteobacteria use the extracytoplasmic function (ECF) σ factor, RpoE, to invoke envelope homeostasis networks in response to stress. Acinetobacter species contain the poorly characterized ECF "SigAb;" however, it is unclear if SigAb has the same physiological role as RpoE. Here, we show that SigAb is a metal stress-responsive ECF that appears unique to Acinetobacter species and distinct from RpoE. We combine promoter mutagenesis, motif scanning, and ChIP-seq to define the direct SigAb regulon, which consists of sigAb itself, the stringent response mediator, relA, and the uncharacterized small RNA, "sabS." However, RNA-seq of strains overexpressing SigAb revealed a large, indirect regulon containing hundreds of genes. Metal resistance genes are key elements of the indirect regulon, as CRISPRi knockdown of sigAb or sabS resulted in increased copper sensitivity and excess copper induced SigAb-dependent transcription. Further, we found that two uncharacterized genes in the sigAb operon, "aabA" and "aabB", have anti-SigAb activity. Finally, employing a targeted Tn-seq approach that uses CRISPR-associated transposons, we show that sigAb, aabA, and aabB are important for fitness even during optimal growth conditions. Our work reveals new physiological roles for SigAb and SabS, provides a novel approach for assessing gene fitness, and highlights the distinct regulatory architecture of A. baumannii.
Collapse
Affiliation(s)
- Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
| | - Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
3
|
Lu Q, Chen T, Wang J, Wang F, Ye W, Ma L, Wu S. Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase. Biomolecules 2023; 13:biom13050738. [PMID: 37238608 DOI: 10.3390/biom13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial RNA polymerases (RNAP) form distinct holoenzymes with different σ factors to initiate diverse gene expression programs. In this study, we report a cryo-EM structure at 2.49 Å of RNA polymerase transcription complex containing a temperature-sensitive bacterial σ factor, σ32 (σ32-RPo). The structure of σ32-RPo reveals key interactions essential for the assembly of E. coli σ32-RNAP holoenzyme and for promoter recognition and unwinding by σ32. Specifically, a weak interaction between σ32 and -35/-10 spacer is mediated by T128 and K130 in σ32. A histidine in σ32, rather than a tryptophan in σ70, acts as a wedge to separate the base pair at the upstream junction of the transcription bubble, highlighting the differential promoter-melting capability of different residue combinations. Structure superimposition revealed relatively different orientations between βFTH and σ4 from other σ-engaged RNAPs and biochemical data suggest that a biased σ4-βFTH configuration may be adopted to modulate binding affinity to promoter so as to orchestrate the recognition and regulation of different promoters. Collectively, these unique structural features advance our understanding of the mechanism of transcription initiation mediated by different σ factors.
Collapse
Affiliation(s)
- Qiang Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Taiyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiening Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenlong Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. DISEASE MARKERS 2022; 2022:7475704. [PMID: 35634445 PMCID: PMC9142298 DOI: 10.1155/2022/7475704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Sigma factor B (SigB), an alternative sigma factor (ASF), is very similar to primary sigma factor SigA (σ 70) but dispensable for growth in both Mycobacterium smegmatis (Msmeg) and Mycobacterium tuberculosis (Mtb). It is involved in general stress responses including heat, oxidative, surface, starvation stress, and macrophage infections. Despite having an extremely short half-life, SigB tends to operate downstream of at least three stress-responsive extra cytoplasmic function (ECF) sigma factors (SigH, SigE, SigL) and SigF involved in multiple signaling pathways. There is very little information available regarding the regulation of SigB sigma factor and its interacting protein partners. Hence, we cloned the SigB gene into pET28a vector and optimized its expression in three different strains of E. coli, viz., (BL21 (DE3), C41 (DE3), and CodonPlus (DE3)). We also optimized several other parameters for the expression of recombinant SigB including IPTG concentration, temperature, and time duration. We achieved the maximum expression of SigB at 25°C in the soluble fraction of the cell which was purified by affinity chromatography using Ni-NTA and further confirmed by Western blotting. Further, structural characterization demonstrates the instability of SigB in comparison to SigA that is carried out using homology modeling and structure function relationship. We have done protein-protein docking of RNA polymerase (RNAP) of Msmeg and SigB. This effort provides a platform for pulldown assay, structural, and other studies with the recombinant protein to deduce the SigB interacting proteins, which might pave the way to study its signaling networks along with its regulation.
Collapse
|
5
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
6
|
Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. ISME JOURNAL 2020; 14:2347-2357. [PMID: 32514119 PMCID: PMC7608860 DOI: 10.1038/s41396-020-0696-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/23/2023]
Abstract
While horizontal gene transfer is prevalent across the biosphere, the regulatory features that enable expression and functionalization of foreign DNA remain poorly understood. Here, we combine high-throughput promoter activity measurements and large-scale genomic analysis of regulatory regions to investigate the cross-compatibility of regulatory elements (REs) in bacteria. Functional characterization of thousands of natural REs in three distinct bacterial species revealed distinct expression patterns according to RE and recipient phylogeny. Host capacity to activate foreign promoters was proportional to their genomic GC content, while many low GC regulatory elements were both broadly active and had more transcription start sites across hosts. The difference in expression capabilities could be explained by the influence of the host GC content on the stringency of the AT-rich canonical σ70 motif necessary for transcription initiation. We further confirm the generalizability of this model and find widespread GC content adaptation of the σ70 motif in a set of 1,545 genomes from all major bacterial phyla. Our analysis identifies a key mechanism by which the strength of the AT-rich σ70 motif relative to a host's genomic GC content governs the capacity for expression of acquired DNA. These findings shed light on regulatory adaptation in the context of evolving genomic composition.
Collapse
|
7
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
8
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Li L, Fang C, Zhuang N, Wang T, Zhang Y. Structural basis for transcription initiation by bacterial ECF σ factors. Nat Commun 2019; 10:1153. [PMID: 30858373 PMCID: PMC6411747 DOI: 10.1038/s41467-019-09096-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial RNA polymerase employs extra-cytoplasmic function (ECF) σ factors to regulate context-specific gene expression programs. Despite being the most abundant and divergent σ factor class, the structural basis of ECF σ factor-mediated transcription initiation remains unknown. Here, we determine a crystal structure of Mycobacterium tuberculosis (Mtb) RNAP holoenzyme comprising an RNAP core enzyme and the ECF σ factor σH (σH-RNAP) at 2.7 Å, and solve another crystal structure of a transcription initiation complex of Mtb σH-RNAP (σH-RPo) comprising promoter DNA and an RNA primer at 2.8 Å. The two structures together reveal the interactions between σH and RNAP that are essential for σH-RNAP holoenzyme assembly as well as the interactions between σH-RNAP and promoter DNA responsible for stringent promoter recognition and for promoter unwinding. Our study establishes that ECF σ factors and primary σ factors employ distinct mechanisms for promoter recognition and for promoter unwinding.
Collapse
Affiliation(s)
- Lingting Li
- 0000000119573309grid.9227.eKey Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chengli Fang
- 0000000119573309grid.9227.eKey Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ningning Zhuang
- 0000000119573309grid.9227.eKey Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Tiantian Wang
- 0000000119573309grid.9227.eKey Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu Zhang
- 0000000119573309grid.9227.eKey Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
11
|
Fitzgerald DM, Smith C, Lapierre P, Wade JT. The evolutionary impact of intragenic FliA promoters in proteobacteria. Mol Microbiol 2018; 108:361-378. [PMID: 29476659 PMCID: PMC5943157 DOI: 10.1111/mmi.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
In Escherichia coli, one sigma factor recognizes the majority of promoters, and six 'alternative' sigma factors recognize specific subsets of promoters. The alternative sigma factor FliA (σ28 ) recognizes promoters upstream of many flagellar genes. We previously showed that most E. coli FliA binding sites are located inside genes. However, it was unclear whether these intragenic binding sites represent active promoters. Here, we construct and assay transcriptional promoter-lacZ fusions for all 52 putative FliA promoters previously identified by ChIP-seq. These experiments, coupled with integrative analysis of published genome-scale transcriptional datasets, strongly suggest that most intragenic FliA binding sites are active promoters that transcribe highly unstable RNAs. Additionally, we show that widespread intragenic FliA-dependent transcription may be a conserved phenomenon, but that specific promoters are not themselves conserved. We conclude that intragenic FliA-dependent promoters and the resulting RNAs are unlikely to have important regulatory functions. Nonetheless, one intragenic FliA promoter is broadly conserved and constrains evolution of the overlapping protein-coding gene. Thus, our data indicate that intragenic regulatory elements can influence bacterial protein evolution and suggest that the impact of intragenic regulatory sequences on genome evolution should be considered more broadly.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
12
|
|
13
|
Liu H, Jakkula LUMR, Von Ohlen T, Ganta RR. Sequence determinants spanning -35 motif and AT-rich spacer region impacting Ehrlichia chaffeensis Sigma 70-dependent promoter activity of two differentially expressed p28 outer membrane protein genes. DNA Res 2016; 23:495-505. [PMID: 27402867 PMCID: PMC5066175 DOI: 10.1093/dnares/dsw034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes.
Collapse
Affiliation(s)
- Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Laxmi U M R Jakkula
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tonia Von Ohlen
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs. J Bacteriol 2016; 198:1927-1938. [PMID: 27137497 DOI: 10.1128/jb.00244-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both -35 and -10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended -10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the -10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the -10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable -35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended -10 element can compensate for the lack of -35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well-studied housekeeping σ factors. Here we extensively compare bacterial and bacteriophage ECF σ factors and their promoters in order to infer DNA and protein recognition motifs involved in transcription initiation. We predict a more flexible promoter structure than is recognized by the current paradigm, which assumes rigidness, and propose that ECF σ promoter elements may complement (mix and match with) each other's strengths. These results warrant the refocusing of research efforts from the well-studied housekeeping σ factors toward the physiologically highly important, but insufficiently understood, alternative σ factors.
Collapse
|
15
|
Albers SC, Gallegos VA, Peebles CAM. Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques. J Biotechnol 2015; 216:36-46. [PMID: 26450561 DOI: 10.1016/j.jbiotec.2015.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 12/01/2022]
Abstract
Cyanobacteria show promise as photosynthetic microbial factories capable of harnessing sunlight and CO2 to produce valuable end products, but few genetic control tools have been characterized and utilized in these organisms. To develop a suite of control elements capable of gene control at a variety of expression strengths, a library of 10 promoter-constructs were developed and built via rational design techniques by adding individual nucleotides in a step-wise manner within the -10 and -35 cis-acting regions of the tac promoter. This suite produced a dynamic range of expression strength, exhibiting a 78 fold change between the lowest expressing promoter, Psca8- and the highest expressing promoter, Psca3-2 when tested within Synechocystis sp. PCC 6803. Additionally, this study details the construction of a chemically inducible construct for use in Synechocystis that is based on the tac repressor system most commonly used in Escherichia coli. This research demonstrates the construction of a highly expressed inducible promoter that is also capable of high levels of gene repression. Upon chemical induction with IPTG, this same mutant strain was capable of exhibiting an average 24X increase in GFP expression over that of the repressed state.
Collapse
Affiliation(s)
- Stevan C Albers
- Cell and Molecular Biology Graduate Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Victor A Gallegos
- Department of Biochemistry and Molecular Biology, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Christie A M Peebles
- Cell and Molecular Biology Graduate Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
16
|
Goldman SR, Nair NU, Wells CD, Nickels BE, Hochschild A. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo. eLife 2015; 4. [PMID: 26371553 PMCID: PMC4604602 DOI: 10.7554/elife.10514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
The σ subunit of bacterial RNA polymerase (RNAP) confers on the enzyme the ability to initiate promoter-specific transcription. Although σ factors are generally classified as initiation factors, σ can also remain associated with, and modulate the behavior of, RNAP during elongation. Here we establish that the primary σ factor in Escherichia coli, σ70, can function as an elongation factor in vivo by loading directly onto the transcription elongation complex (TEC) in trans. We demonstrate that σ70 can bind in trans to TECs that emanate from either a σ70-dependent promoter or a promoter that is controlled by an alternative σ factor. We further demonstrate that binding of σ70 to the TEC in trans can have a particularly large impact on the dynamics of transcription elongation during stationary phase. Our findings establish a mechanism whereby the primary σ factor can exert direct effects on the composition of the entire transcriptome, not just that portion that is produced under the control of σ70-dependent promoters. DOI:http://dx.doi.org/10.7554/eLife.10514.001 Proteins are made following instructions that are encoded by sections of DNA called genes. In the first step of protein production, an enzyme called RNA polymerase uses the gene as a template to make molecules of messenger ribonucleic acid (mRNA). This process—known as transcription—starts when RNA polymerase binds to a site at the start of a gene. The enzyme then moves along the DNA, assembling the mRNA as it goes. This stage of transcription is known as elongation and continues until the RNA polymerase reaches the end of the gene. In bacteria, RNA polymerase needs a family of proteins called sigma factors to help it identify and bind to the start sites associated with the genes that will be transcribed. In the well studied bacterium known as E. coli, the primary sigma factor that is required for transcription initiation on most genes is called sigma 70. Recent research has shown that sigma 70 also influences the activity of RNA polymerase during elongation. During this stage, the RNA polymerase and several other proteins interact to form a complex called the transcription elongation complex (or TEC for short). However, it is not clear how sigma 70 gains access to this complex: does it simply remain with RNA polymerase after transcription starts, or is it freshly incorporated into the TEC during elongation? Goldman, Nair et al. found that sigma 70 is able to incorporate into TECs during elongation and causes them to pause at specific sites in the gene. Sigma 70 can even incorporate into TECs on genes where transcription was initiated by a different sigma factor. These findings indicate that sigma 70 can directly influence the transcription of all genes, not just the genes with start sites that are recognized by this sigma factor. Goldman et al. also observed that in cells that were growing and dividing rapidly, the pauses that occurred due to sigma 70 associating with TECs were of shorter duration than those in cells that were growing slowly. This implies that the growth status of the cells modulates the pausing of RNA polymerase during transcription. In the future, it will be important to understand how much influence the primary sigma factor has on RNA polymerase during elongation in E. coli and other bacteria. DOI:http://dx.doi.org/10.7554/eLife.10514.002
Collapse
Affiliation(s)
- Seth R Goldman
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Genetics, Waksman Institute, Rutgers University, New Brunswick, United States
| | - Nikhil U Nair
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Christopher D Wells
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Bryce E Nickels
- Department of Genetics, Waksman Institute, Rutgers University, New Brunswick, United States
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
17
|
Campagne S, Allain FHT, Vorholt JA. Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. Curr Opin Struct Biol 2015; 30:71-78. [PMID: 25678040 DOI: 10.1016/j.sbi.2015.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Bacterial transcription initiation is controlled by sigma factors, the RNA polymerase (RNAP) subunits responsive for promoter specificity. While the primary sigma factor ensures the bulk of transcription during growth, a major strategy used by bacteria to regulate gene expression consists of modifying the RNAP promoter specificity by means of alternative sigma factors. Among these factors, Extra Cytoplasmic Function sigma factors (σ(ECF)) constitute the most abundant group and are generally kept inactive by specific anti-sigma factors that are directly or indirectly sensitive to environmental stimuli. When activated by anti-sigma factor release, σ(ECF) turn on the transcription of dedicated regulons, which trigger adaptive responses for the survival of the cell. Recent structural studies have deciphered the molecular basis for σ(ECF) promoter recognition and original regulatory mechanisms.
Collapse
|
18
|
Kuo HH, Huang WC, Lin TF, Yeh HY, Liou KM, Chang BY. The core-independent promoter-specific binding of Bacillus subtilis σB. FEBS J 2015; 282:1307-18. [PMID: 25652417 DOI: 10.1111/febs.13222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/18/2014] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis σ(D) is an alternative σ factor that possesses a core-independent promoter -10 element binding specificity despite the lack of a distinct footprint on its cognate promoter. We wished to determine whether this property is common to alternative σ factors. To this end, we over-expressed B. subtilis σ(B) in Escherichia coli and analyzed its DNA binding ability by electrophoretic mobility shift assay and DNase I footprinting. The major complex formed by σ(B) and its cognate promoter DNA is heparin-sensitive. However, in contrast to the -10 element binding specificity observed for B. subtilis σ(D) , the promoter binding of σ(B) is specific for the -35 element. These and other results clearly demonstrate that alternative σ factors possess different promoter-binding characteristics, and make core-independent contributions to recognition of their cognate promoters.
Collapse
Affiliation(s)
- Heng-Hsu Kuo
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
20
|
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHT. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 2014; 21:269-76. [PMID: 24531660 DOI: 10.1038/nsmb.2777] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Bacterial transcription is controlled by sigma factors, the RNA polymerase subunits that act as initiation factors. Although a single housekeeping sigma factor enables transcription from thousands of promoters, environmentally induced sigma factors redirect gene expression toward small regulons to carry out focused responses. Using structural and functional analyses, we determined the molecular basis of -10 promoter element recognition by Escherichia coli σ(E), which revealed an unprecedented way to achieve promoter melting. Group IV sigma factors induced strand separation at the -10 element by flipping out a single nucleotide from the nontemplate-strand DNA base stack. Unambiguous selection of this critical base was driven by a dynamic protein loop, which can be substituted to modify specificity of promoter recognition. This mechanism of promoter melting explains the increased promoter-selection stringency of environmentally induced sigma factors.
Collapse
Affiliation(s)
- Sébastien Campagne
- 1] Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland. [2] Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - May E Marsh
- Paul Scherrer Institut, Villigen, Switzerland
| | | | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Pupov D, Kuzin I, Bass I, Kulbachinskiy A. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape. Nucleic Acids Res 2014; 42:4494-504. [PMID: 24452800 PMCID: PMC3985618 DOI: 10.1093/nar/gkt1384] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path. Analysis of the transcription effects of substitutions and deletions in this region in Escherichia coli σ70 subunit, performed in this work, suggests that (i) individual residues in the σ3.2 finger collectively contribute to RNA priming by RNAP, likely by the positioning of the template DNA strand in the active centre, but are not critical to promoter escape; (ii) the physical presence of σ3.2 in the RNA exit channel is important for promoter escape; (iii) σ3.2 promotes σ dissociation during initiation and suppresses σ-dependent promoter-proximal pausing; (iv) σ3.2 contributes to allosteric inhibition of the initiating NTP binding by rifamycins. Thus, region σ3.2 performs distinct functions in transcription initiation and its inhibition by antibiotics. The B-reader element of eukaryotic factor TFIIB likely plays similar roles in RNAPII transcription, revealing common principles in transcription initiation in various domains of life.
Collapse
Affiliation(s)
- Danil Pupov
- Laboratory of Molecular Genetics of Microorganisms, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | | | |
Collapse
|
22
|
de Avila e Silva S, Forte F, T S Sartor I, Andrighetti T, J L Gerhardt G, Longaray Delamare AP, Echeverrigaray S. DNA duplex stability as discriminative characteristic for Escherichia coli σ(54)- and σ(28)- dependent promoter sequences. Biologicals 2013; 42:22-8. [PMID: 24172230 DOI: 10.1016/j.biologicals.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022] Open
Abstract
The advent of modern high-throughput sequencing has made it possible to generate vast quantities of genomic sequence data. However, the processing of this volume of information, including prediction of gene-coding and regulatory sequences remains an important bottleneck in bioinformatics research. In this work, we integrated DNA duplex stability into the repertoire of a Neural Network (NN) capable of predicting promoter regions with augmented accuracy, specificity and sensitivity. We took our method beyond a simplistic analysis based on a single sigma subunit of RNA polymerase, incorporating the six main sigma-subunits of Escherichia coli. This methodology employed successfully re-discovered known promoter sequences recognized by E. coli RNA polymerase subunits σ(24), σ(28), σ(32), σ(38), σ(54) and σ(70), with highlighted accuracies for σ(28)- and σ(54)- dependent promoter sequences (values obtained were 80% and 78.8%, respectively). Furthermore, the discrimination of promoters according to the σ factor made it possible to extract functional commonalities for the genes expressed by each type of promoter. The DNA duplex stability rises as a distinctive feature which improves the recognition and classification of σ(28)- and σ(54)- dependent promoter sequences. The findings presented in this report underscore the usefulness of including DNA biophysical parameters into NN learning algorithms to increase accuracy, specificity and sensitivity in promoter beyond what is accomplished based on sequence alone.
Collapse
Affiliation(s)
- Scheila de Avila e Silva
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Franciele Forte
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Ivaine T S Sartor
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Tahila Andrighetti
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Günther J L Gerhardt
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Ana Paula Longaray Delamare
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Sergio Echeverrigaray
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
23
|
RNA polymerase approaches its promoter without long-range sliding along DNA. Proc Natl Acad Sci U S A 2013; 110:9740-5. [PMID: 23720315 DOI: 10.1073/pnas.1300221110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence-specific DNA binding proteins must quickly bind target sequences, despite the enormously larger amount of nontarget DNA present in cells. RNA polymerases (or associated general transcription factors) are hypothesized to reach promoter sequences by facilitated diffusion (FD). In FD, a protein first binds to nontarget DNA and then reaches the target by a 1D sliding search. We tested whether Escherichia coli σ(54)RNA polymerase reaches a promoter by FD using the colocalization single-molecule spectroscopy (CoSMoS) multiwavelength fluorescence microscopy technique. Experiments directly compared the rates of initial polymerase binding to and dissociation from promoter and nonpromoter DNAs measured in the same sample under identical conditions. Binding to a nonpromoter DNA was much slower than binding to a promoter-containing DNA of the same length, indicating that the detected nonspecific binding events are not on the pathway to promoter binding. Truncating one of the DNA segments flanking the promoter to a length as short as 7 bp or lengthening it to ~3,000 bp did not alter the promoter-specific binding rate. These results exclude FD over distances corresponding to the length of the promoter or longer from playing any significant role in accelerating promoter search. Instead, the data support a direct binding mechanism, in which σ(54)RNA polymerase reaches the local vicinity of promoters by 3D diffusion through solution, and suggest that binding may be accelerated by atypical structural or dynamic features of promoter DNA. Direct binding explains how polymerase can quickly reach a promoter, despite occupancy of promoter-flanking DNA by bound proteins that would impede FD.
Collapse
|
24
|
Abstract
In the past decade, systems biology has revealed great metabolic and regulatory complexity even in seemingly simple microbial systems. Metabolic engineering aims to control this complexity in order to establish sustainable and economically viable production routes for valuable chemicals. Recent advances in systems-level data generation and modeling of cellular metabolism and regulation together with tremendous progress in synthetic biology will provide the tools to put biotechnologists on the fast track for implementing novel production processes. Great potential lies in the reduction of cellular complexity by orthogonalization of metabolic modules. Here, we review recent advances that will eventually enable metabolic engineers to predict, design, and build streamlined microbial cell factories with reduced time and effort.
Collapse
Affiliation(s)
- Joerg Mampel
- B.R.A.I.N. AG (Biotechnology Research and Information Network), Darmstaedter Strasse 34-36, D-64673 Zwingenberg, Germany.
| | | | | | | |
Collapse
|
25
|
Liu J, Li J, Wu Z, Pei H, Zhou J, Xiang H. Identification and characterization of the cognate anti-sigma factor and specific promoter elements of a T. tengcongensis ECF sigma factor. PLoS One 2012; 7:e40885. [PMID: 22815853 PMCID: PMC3397946 DOI: 10.1371/journal.pone.0040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Extracytoplasmic function (ECF) σ factors, the largest group of alternative σ factors, play important roles in response to environmental stresses. Tt-RpoE1 is annotated as an ECF σ factor in Thermoanaerobacter tengcongensis. In this study, we revealed that the Tt-tolB gene located downstream of the Tt-rpoE1 gene encoded the cognate anti-σ factor, which could inhibit the transcription activity of Tt-RpoE1 by direct interaction with Tt-RpoE1 via its N-terminal domain. By in vitro transcription assay, the auto-regulation ability of Tt-RpoE1 was determined, and band shift assay showed that Tt-RpoE1 preferred to bind a fork-junction promoter DNA. With truncation or base-specific scanning mutations, the contribution of the nucleotides in −35 and −10 regions to interaction between Tt-RpoE1 and promoter DNA was explored. The promoter recognition pattern of Tt-RpoE1 was determined as 5′ tGTTACN16CGTC 3′, which was further confirmed by in vitro transcription assays. This result showed that the Tt-RpoE1-recognized promoter possessed a distinct −10 motif (−13CGTC−10) as the recognition determinant, which is distinguished from the −10 element recognized by σ70. Site-directed mutagenesis in Region 2.4 of Tt-RpoE1 indicated that the “D” residue of DXXR motif was responsible for recognizing the −12G nucleotide. Our results suggested that distinct −10 motif may be an efficient and general strategy used by ECF σ factors in adaptive response regulation of the related genes.
Collapse
Affiliation(s)
- Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huadong Pei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium. J Bacteriol 2012; 194:4983-94. [PMID: 22773790 DOI: 10.1128/jb.00449-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sinorhizobium meliloti can live as a soil saprophyte and can engage in a nitrogen-fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma (σ) factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative σ factors, including two putative RpoH ("heat shock") σ factors. We used custom Affymetrix symbiosis chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2, and rpoH1 rpoH2 mutants during heat shock and stationary-phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2. We mapped transcript start sites of 69 rpoH-dependent genes using 5' RACE (5' rapid amplification of cDNA ends), which allowed us to determine putative RpoH1-dependent, RpoH2-dependent, and dual-promoter (RpoH1- and RpoH2-dependent) consensus sequences that were each used to search the genome for other potential direct targets of RpoH. The inferred S. meliloti RpoH promoter consensus sequences share features of Escherichia coli RpoH promoters but lack extended -10 motifs.
Collapse
|
27
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
28
|
da Fonsêca MM, Zaha A, Caffarena ER, Vasconcelos ATR. Structure-based functional inference of hypothetical proteins from Mycoplasma hyopneumoniae. J Mol Model 2012; 18:1917-25. [PMID: 21870198 PMCID: PMC3340535 DOI: 10.1007/s00894-011-1212-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/05/2011] [Indexed: 10/27/2022]
Abstract
Enzootic pneumonia caused by Mycoplasma hyopneumoniae is a major constraint to efficient pork production throughout the world. This pathogen has a small genome with 716 coding sequences, of which 418 are homologous to proteins with known functions. However, almost 42% of the 716 coding sequences are annotated as hypothetical proteins. Alternative methodologies such as threading and comparative modeling can be used to predict structures and functions of such hypothetical proteins. Often, these alternative methods can answer questions about the properties of a model system faster than experiments. In this study, we predicted the structures of seven proteins annotated as hypothetical in M. hyopneumoniae, using the structure-based approaches mentioned above. Three proteins were predicted to be involved in metabolic processes, two proteins in transcription and two proteins where no function could be assigned. However, the modeled structures of the last two proteins suggested experimental designs to identify their functions. Our findings are important in diminishing the gap between the lack of annotation of important metabolic pathways and the great number of hypothetical proteins in the M. hyopneumoniae genome.
Collapse
Affiliation(s)
- Marbella Maria da Fonsêca
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, 25651-075 RJ Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS Brazil
| | - Ernesto R. Caffarena
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ Brazil
| | | |
Collapse
|
29
|
Rhodius VA, Mutalik VK, Gross CA. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Res 2011; 40:2907-24. [PMID: 22156164 PMCID: PMC3326320 DOI: 10.1093/nar/gkr1190] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.
Collapse
Affiliation(s)
- Virgil A Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
30
|
Kingston AW, Subramanian C, Rock CO, Helmann JD. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity. Mol Microbiol 2011; 81:69-79. [PMID: 21542858 DOI: 10.1111/j.1365-2958.2011.07679.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacteria respond to physical and chemical stresses that affect the integrity of the cell wall and membrane by activating an intricate cell envelope stress response. The ability of cells to regulate the biophysical properties of the membrane by adjusting fatty acid composition is known as homeoviscous adaptation. Here, we identify a homeoviscous adaptation mechanism in Bacillus subtilis regulated by the extracytoplasmic function σ factor σ(W). Cell envelope active compounds, including detergents, activate a sense-oriented, σ(W)-dependent promoter within the first gene of the fabHa fabF operon. Activation leads to a decrease in the amount of FabHa coupled with an increase in FabF, the initiation and elongation condensing enzymes of fatty acid biosynthesis respectively. Downregulation of FabHa results in an increased reliance on the FabHb paralogue leading to a greater proportion of straight chain fatty acids in the membrane, and the upregulation of FabF increases the average fatty acid chain length. The net effect is to reduce membrane fluidity. The inactivation of the σ(W)-dependent promoter within fabHa increased sensitivity to detergents and to antimicrobial compounds produced by other Bacillus spp. Thus, the σ(W) stress response provides a mechanism to conditionally decrease membrane fluidity through the opposed regulation of FabHa and FabF.
Collapse
Affiliation(s)
- Anthony W Kingston
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
31
|
Saecker RM, Record MT, Dehaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
32
|
Camacho A, Salas M. Molecular interactions and protein-induced DNA hairpin in the transcriptional control of bacteriophage ø29 DNA. Int J Mol Sci 2010; 11:5129-42. [PMID: 21614197 PMCID: PMC3100819 DOI: 10.3390/ijms11125129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/22/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022] Open
Abstract
Studies on the regulation of phage Ø29 gene expression revealed a new mechanism to accomplish simultaneous activation and repression of transcription leading to orderly gene expression. Two phage-encoded early proteins, p4 and p6, bind synergistically to DNA, modifying the topology of the sequences encompassing early promoters A2c and A2b and late promoter A3 in a hairpin that allows the switch from early to late transcription. Protein p6 is a nucleoid-like protein that binds DNA in a non-sequence specific manner. Protein p4 is a sequence-specific DNA binding protein with multifaceted sequence-readout properties. The protein recognizes the chemical signature of only one DNA base on the inverted repeat of its target sequence through a direct-readout mechanism. In addition, p4 specific binding depends on the recognition of three A-tracts by indirect-readout mechanisms. The biological importance of those three A-tracts resides in their individual properties rather than in the global curvature that they may induce.
Collapse
Affiliation(s)
- Ana Camacho
- Institute Eladio Viñuela (CSIC), Center of Molecular Biology Severo Ochoa (CSIC-UAM), Madrid Autonomous University, 28049 Madrid, Spain; E-Mail:
| | | |
Collapse
|
33
|
DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σ(D) proteins. J Bacteriol 2010; 193:575-9. [PMID: 21097624 DOI: 10.1128/jb.01193-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
σ(D) proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the -10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.
Collapse
|
34
|
Feklistov A, Darst SA. Promoter recognition by bacterial alternative sigma factors: the price of high selectivity? Genes Dev 2009; 23:2371-5. [PMID: 19833764 DOI: 10.1101/gad.1862609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A key step in bacterial transcription initiation is melting of the double-stranded promoter DNA by the RNA polymerase holoenzyme. Primary sigma factors mediate the melting of thousands of promoters through a conserved set of aromatic amino acids. Alternative sigmas, which direct transcription of restricted regulons, lack the full set of melting residues. In this issue of Genes & Development, Koo and colleagues (pp. 2426-2436) show that introducing the primary sigma melting residues into alternative sigmas relaxes their promoter specificity, pointing to a trade-off of reduced promoter melting capacity for increased promoter stringency.
Collapse
|