1
|
Attem J, Vemuganti GK. The Role of Small Extracellular Vesicles in Retinoblastoma Development and Progression. Curr Eye Res 2025:1-15. [PMID: 39905667 DOI: 10.1080/02713683.2025.2457102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
A growing body of research on extracellular vesicles (EVs) in cancer has revealed their novel and crucial activities in the progression of tumors while also paving the way for potential therapeutic interventions. It is now known that EVs are natural delivery vehicles for particular payloads of source cells, enabling them to influence diverse functions of cells both in healthy and malignant cells. In this review, we comprehensively summarize mechanistic insights into sEV roles in RB, the most frequent intraocular malignancy that affects the retina of young children. We also explore the therapeutic potential of sEVs as an emerging area as biomarkers and vehicles for targeted therapy. Additionally, we address the potential challenges and limitations of translating sEVs-based technologies into clinical practice.
Collapse
Affiliation(s)
- Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Schwartz CJ, Marra A, Selenica P, Gazzo A, Tan K, Ross D, Razavi P, Chandarlapaty S, Weigelt B, Reis-Filho JS, Brogi E, Pareja F, Wen HY. RB1 Genetic Alterations in Estrogen Receptor-Positive Breast Carcinomas: Correlation With Neuroendocrine Differentiation. Mod Pathol 2024; 37:100541. [PMID: 38897452 PMCID: PMC11344677 DOI: 10.1016/j.modpat.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Genetic alterations in the retinoblastoma susceptibility gene (RB1) are present in up to 40% of triple-negative breast cancers (BCs) and frequent in tumors with neuroendocrine differentiation, including small cell neuroendocrine carcinoma. Data on RB1 genetic alterations in estrogen receptor (ER)-positive BCs are scarce. In this study, we sought to define the morphologic, immunohistochemical, and genetic features of ER-positive BCs harboring somatic alterations in RB1, with emphasis on neuroendocrine differentiation. ER-positive BCs with pathogenic RB1 genetic alterations were identified in <1% of cases (N = 55) from a cohort of 6026 BCs previously subjected to targeted next-generation sequencing, including 23 primary BCs (pBCs) and 32 recurrent/metastatic BCs (mBCs). In cases where loss of heterozygosity of the wild-type RB1 allele could be assessed (93%, 51/55), most pBCs (82%, 18/22) and mBCs (90%, 26/29) exhibited biallelic RB1 inactivation, primarily through loss-of-function mutation and loss of heterozygosity (98%, 43/44). Upon histologic review, a subset of RB1-altered tumors exhibited neuroendocrine morphology (13%, 7/55), which correlated with expression of neuroendocrine markers (39%, 9/23) in both pBCs (27%, 3/11) and mBCs (50%, 6/12). Loss of Rb protein expression was observed in BCs with biallelic RB1 loss only, with similar frequency in pBCs (82%, 9/11) and mBCs (75%, 9/12). All cases with neuroendocrine marker expression (n = 9) and/or neuroendocrine morphology (n = 7) harbored biallelic genetic inactivation of RB1 and exhibited Rb loss of expression. TP53 (53%, 29/55) and PIK3CA (45%, 25/55) were the most frequently comutated genes across the cohort. Overall, these findings suggest that ER-positive BCs with biallelic RB1 genetic alterations frequently exhibit Rb protein loss, which correlates with neuroendocrine differentiation in select BCs. This study provides insights into the molecular and phenotypic heterogeneity of BCs with RB1 genetic inactivation, underscoring the need for further research into the potential clinical implications associated with these tumors.
Collapse
Affiliation(s)
- Christopher J Schwartz
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kiki Tan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dara Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with AstraZeneca, Gaithersburg, Maryland
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Isabelle Choi J, Wojcieszynski A, Amos RA, Giap H, Apisarnthanarax S, Ashman JB, Anand A, Perles LA, Williamson T, Ramkumar S, Molitoris J, Simone CB, Chuong MD. PTCOG Gastrointestinal Subcommittee Lower Gastrointestinal Tract Malignancies Consensus Statement. Int J Part Ther 2024; 11:100019. [PMID: 38757077 PMCID: PMC11095104 DOI: 10.1016/j.ijpt.2024.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.
Collapse
Affiliation(s)
- J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- New York Proton Center, New York, New York, USA
| | | | - Richard A. Amos
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Huan Giap
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Smith Apisarnthanarax
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | | | - Aman Anand
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Luis A. Perles
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tyler Williamson
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- New York Proton Center, New York, New York, USA
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| |
Collapse
|
4
|
Rader AE, Bayarmagnai B, Frolov MV. Combined inactivation of RB and Hippo converts differentiating Drosophila photoreceptors into eye progenitor cells through derepression of homothorax. Dev Cell 2023; 58:2261-2274.e6. [PMID: 37848027 PMCID: PMC10842633 DOI: 10.1016/j.devcel.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
The retinoblastoma (RB) and Hippo pathways interact to regulate cell proliferation and differentiation. However, the mechanism of interaction is not fully understood. Drosophila photoreceptors with inactivated RB and Hippo pathways specify normally but fail to maintain their neuronal identity and dedifferentiate. We performed single-cell RNA sequencing to elucidate the cause of dedifferentiation and to determine the fate of these cells. We find that dedifferentiated cells adopt a progenitor-like fate due to inappropriate activation of the retinal differentiation suppressor homothorax (hth) by Yki/Sd. This results in the activation of a distinct Yki/Hth transcriptional program, driving photoreceptor dedifferentiation. We show that Rbf physically interacts with Yki and, together with the GAGA factor, inhibits the hth expression. Thus, RB and Hippo pathways cooperate to maintain photoreceptor differentiation by preventing inappropriate expression of hth in differentiating photoreceptors. Our work highlights the importance of both RB and Hippo pathway activities for maintaining the state of terminal differentiation.
Collapse
Affiliation(s)
- Alexandra E Rader
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
5
|
Byroju VV, Nadukkandy AS, Cordani M, Kumar LD. Retinoblastoma: present scenario and future challenges. Cell Commun Signal 2023; 21:226. [PMID: 37667345 PMCID: PMC10478474 DOI: 10.1186/s12964-023-01223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
With an average incidence of 1 in every 18,000 live births, retinoblastoma is a rare type of intraocular tumour found to affect patients during their early childhood. It is curable if diagnosed at earlier stages but can become life-threateningly malignant if not treated timely. With no racial or gender predisposition, or even environmental factors known to have been involved in the incidence of the disease, retinoblastoma is often considered a clinical success story in pediatric oncology. The survival rate in highly developed countries is higher than 95% and they have achieved this because of the advancement in the development of diagnostics and treatment techniques. This includes developing the already existing techniques like chemotherapy and embarking on new strategies like enucleation, thermotherapy, cryotherapy, etc. Early diagnosis, studies on the etiopathogenesis and genetics of the disease are the need of the hour for improving the survival rates. According to the Knudson hypothesis, also known as the two hit hypothesis, two hits on the retinoblastoma susceptibility (RB) gene is often considered as the initiating event in the development of the disease. Studies on the molecular basis of the disease have also led to deciphering the downstream events and thus in the discovery of biomarkers and related targeted therapies. Furthermore, improvements in molecular biology techniques enhanced the development of efficient methods for early diagnosis, genetic counseling, and prevention of the disease. In this review, we discuss the genetic and molecular features of retinoblastoma with a special emphasis on the mutation leading to the dysregulation of key signaling pathways involved in cell proliferation, DNA repair, and cellular plasticity. Also, we describe the classification, clinical and epidemiological relevance of the disease, with an emphasis on both the traditional and innovative treatments to tackle retinoblastoma. Video Abstract.
Collapse
Affiliation(s)
- Vishnu Vardhan Byroju
- Department of Biochemistry, American International Medical University, Gros Islet, St. Lucia, USA
| | | | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India.
| |
Collapse
|
6
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
7
|
Shaikh A, Wesner AA, Abuhattab M, Kutty RG, Premnath P. Cell cycle regulators and bone: development and regeneration. Cell Biosci 2023; 13:35. [PMID: 36810262 PMCID: PMC9942316 DOI: 10.1186/s13578-023-00988-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Cell cycle regulators act as inhibitors or activators to prevent cancerogenesis. It has also been established that they can play an active role in differentiation, apoptosis, senescence, and other cell processes. Emerging evidence has demonstrated a role for cell cycle regulators in bone healing/development cascade. We demonstrated that deletion of p21, a cell cycle regulator acting at the G1/S transition enhanced bone repair capacity after a burr-hole injury in the proximal tibia of mice. Similarly, another study has shown that inhibition of p27 can increase bone mineral density and bone formation. Here, we provide a concise review of cell cycle regulators that influence cells like osteoblasts, osteoclasts, and chondrocytes, during development and/or healing of bone. It is imperative to understand the regulatory processes that govern cell cycle during bone healing and development as this will pave the way to develop novel therapies to improve bone healing after injury in instances of aged or osteoporotic fractures.
Collapse
Affiliation(s)
- Alisha Shaikh
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Austin A. Wesner
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Mohanad Abuhattab
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Raman G. Kutty
- Department of Internal Medicine, White River Health System, Batesville, AR USA
| | - Priyatha Premnath
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI, 53211, USA.
| |
Collapse
|
8
|
Zhou L, Chen L, Chen S, Pu Z, Gu M, Shen Y. Highly Efficient Photodynamic Therapy with Mitochondria-Targeting Aggregation-Induced Emission Photosensitizer for Retinoblastoma. Adv Healthc Mater 2023; 12:e2202219. [PMID: 36271734 DOI: 10.1002/adhm.202202219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Indexed: 01/26/2023]
Abstract
Retinoblastoma (RB) is an aggressive eye cancer in infancy and childhood, lethal by metastasis if left untreated. Currently, the survival rate and the chance of saving vision depend on the severity of the disease. In this work, a highly efficient photodynamic ophthalmic therapy for RB is reported by employing an isoquinolinium-based aggregation-induced-emission (AIE) photosensitizer (PS) TPE-IQ-2O for photodynamic inactivation (PDI). TPE-IQ-2O is an efficient mitochondria-targeting photosensitizer as an efficient guided photodynamic therapy (PDT) agent against cancer cells. Maximizing cancer-selectively damage to tumors with minimized side effects on normal tissue is essential for effective anticancer PDT and provides long-lasting protection against metastasis. In addition, TPE-IQ-2O can effectively reduce the degree of tissue inflammation by inhibiting the expression of related inflammatory factors. TPE-IQ-2O also exhibits excellent biocompatibility with a neglectable hemolysis effect on mouse red blood cells and almost no killing effect on mammalian cells, which enables its potential applications in the treatment of RB.
Collapse
Affiliation(s)
- Lingbo Zhou
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| | - Luojia Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, 999077, China
| | - Zeyuan Pu
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yin Shen
- Eye Center, Wuhan University Renmin Hospital, Frontier Science Center for Immunology and Metabolism, and Medical Research Institute at School of Medicine, Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
9
|
Nakanoh S, Kadiwala J, Pinte L, Morell CM, Lenaerts AS, Vallier L. Simultaneous depletion of RB, RBL1 and RBL2 affects endoderm differentiation of human embryonic stem cells. PLoS One 2022; 17:e0269122. [PMID: 36413521 PMCID: PMC9681086 DOI: 10.1371/journal.pone.0269122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
RB is a well-known cell cycle regulator controlling the G1 checkpoint. Previous reports have suggested that it can influence cell fate decisions not only by regulating cell proliferation and survival but also by interacting with transcription factors and epigenetic modifiers. However, the functional redundancy of RB family proteins (RB, RBL1 and RBL2) renders it difficult to investigate their roles during early development, especially in human. Here, we address this problem by generating human embryonic stem cells lacking RB family proteins. To achieve this goal, we first introduced frameshift mutations in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then integrated the shRNA-expression cassette to knockdown RB upon tetracycline treatment. The resulting RBL1/2_dKO+RB_iKD cells remain pluripotent and efficiently differentiate into the primary germ layers in vitro even in the absence of the RB family proteins. In contrast, we observed that subsequent differentiation into foregut endoderm was impaired without the expression of RB, RBL1 and RBL2. Thus, it is suggested that RB proteins are dispensable for the maintenance and acquisition of cell identities during early development, but they are essential to generate advanced derivatives after the formation of primary germ layers. These results also indicate that our RBL1/2_dKO+RB_iKD cell lines are useful to depict the detailed molecular roles of RB family proteins in the maintenance and generation of various cell types accessible from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Juned Kadiwala
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Laetitia Pinte
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Carola Maria Morell
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - An-Sofie Lenaerts
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
10
|
Yao Y, Gu X, Xu X, Ge S, Jia R. Novel insights into RB1 mutation. Cancer Lett 2022; 547:215870. [PMID: 35964818 DOI: 10.1016/j.canlet.2022.215870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of the retinoblastoma susceptibility gene (RB1) decades ago, RB1 has been regarded as a prototype tumor suppressor gene providing a paradigm for tumor genetic research. Constant research has updated the understanding of RB1-related pathways and their impact on tumor and nontumor diseases. Mutation of RB1 gene has been observed in multiple types of malignant tumors including prostate cancer, lung cancer, breast cancer, and almost every familial and sporadic case of retinoblastoma. Even if well-known and long-investigated, the application potential of RB1 mutation has not been fully tapped. In this review, we focus on the mechanism underlying RB1 mutation during oncogenesis. Therapeutically, we have further discussed potential clinical strategies by targeting RB1-mutated cancers. The unsolved problems and prospects of RB1 mutation are also discussed.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
11
|
Valproate Targets Mammalian Gastrulation Impairing Neural Tissue Differentiation and Development of the Placental Source In Vitro. Int J Mol Sci 2022; 23:ijms23168861. [PMID: 36012122 PMCID: PMC9408494 DOI: 10.3390/ijms23168861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The teratogenic activity of valproate (VPA), an antiepileptic and an inhibitor of histone deacetylase (HDACi), is dose-dependent in humans. Previous results showed that VPA impairs in vitro development and neural differentiation of the gastrulating embryo proper. We aimed to investigate the impact of a lower VPA dose in vitro and whether this effect is retained in transplants in vivo. Rat embryos proper (E9.5) and ectoplacental cones were separately cultivated at the air-liquid interface with or without 1 mM VPA. Embryos were additionally cultivated with HDACi Trichostatin A (TSA), while some cultures were syngeneically transplanted under the kidney capsule for 14 days. Embryos were subjected to routine histology, immunohistochemistry, Western blotting and pyrosequencing. The overall growth of VPA-treated embryos in vitro was significantly impaired. However, no differences in the apoptosis or proliferation index were found. Incidence of the neural tissue was lower in VPA-treated embryos than in controls. TSA also impaired growth and neural differentiation in vitro. VPA-treated embryos and their subsequent transplants expressed a marker of undifferentiated neural cells compared to controls where neural differentiation markers were expressed. VPA increased the acetylation of histones. Our results point to gastrulation as a sensitive period for neurodevelopmental impairment caused by VPA.
Collapse
|
12
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Retinoblastoma patient-derived stem cells-an in vivo model to study the role of RB1 in adipogenesis. Histochem Cell Biol 2022; 158:181-192. [PMID: 35445864 DOI: 10.1007/s00418-022-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
Retinoblastoma (RB1) protein is a multifunctional protein that plays an important role in cell cycle regulation and cell differentiation, including adipogenesis. A detailed literature search to understand the role of RB1 in adipogenesis revealed that the nature of the RB1 inactivation (in vivo/in vitro) led to differences in adipogenesis. The majority of these studies were animal-based, and the only study in humans employed an in vitro mode of RB1 inactivation. To overcome these differences and lack of human studies, we sought to explore the role of RB1 in adipogenesis using orbital adipose mesenchymal stem cells (OAMSCs) from patients with retinoblastoma that innately carry a heterozygous RB1 mutation. We hypothesized that these patient-derived RB1 mutant OAMSCs can model in vivo RB1 inactivation in humans. Our study revealed increased adipogenesis with a bias toward brown adipogenesis in the RB1 mutant in addition to an increased number of adipocytes in the mitotic phase.
Collapse
|
14
|
Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, Chrystel I, Morandi U, Stella F, Dominici M, Haider KH. Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers (Basel) 2022; 14:cancers14040976. [PMID: 35205721 PMCID: PMC8869911 DOI: 10.3390/cancers14040976] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer is one of the most debated problems all over the world. Cancer stem cells are considered responsible of tumor initiation, metastasis, drug resistance, and recurrence. This subpopulation of cells has been found into the tumor bulk and showed the capacity to self-renew, differentiate, up to generate a new tumor. In the last decades, several studies have been set on the molecular mechanisms behind their specific characteristics as the Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, etc. The most powerful part of CSCs is represented by the niches as “promoter” of their self-renewal and “protector” from the common oncological treatment as chemotherapy and radiotherapy. In our review article we highlighted the primary mechanisms involved in CSC tumorigenesis for the setting of further targets to control the metastatic process. Abstract Emerging evidence suggests that a small subpopulation of cancer stem cells (CSCs) is responsible for initiation, progression, and metastasis cascade in tumors. CSCs share characteristics with normal stem cells, i.e., self-renewal and differentiation potential, suggesting that they can drive cancer progression. Consequently, targeting CSCs to prevent tumor growth or regrowth might offer a chance to lead the fight against cancer. CSCs create their niche, a specific area within tissue with a unique microenvironment that sustains their vital functions. Interactions between CSCs and their niches play a critical role in regulating CSCs’ self-renewal and tumorigenesis. Differences observed in the frequency of CSCs, due to the phenotypic plasticity of many cancer cells, remain a challenge in cancer therapeutics, since CSCs can modulate their transcriptional activities into a more stem-like state to protect themselves from destruction. This plasticity represents an essential step for future therapeutic approaches. Regarding self-renewal, CSCs are modulated by the same molecular pathways found in normal stem cells, such as Wnt/β-catenin signaling, Notch signaling, and Hedgehog signaling. Another key characteristic of CSCs is their resistance to standard chemotherapy and radiotherapy treatments, due to their capacity to rest in a quiescent state. This review will analyze the primary mechanisms involved in CSC tumorigenesis, with particular attention to the roles of CSCs in tumor progression in benign and malignant diseases; and will examine future perspectives on the identification of new markers to better control tumorigenesis, as well as dissecting the metastasis process.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
- Correspondence:
| | - Valentina Masciale
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Federica Bertolini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Michela Maur
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Giorgia Guaitoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Isca Chrystel
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Uliano Morandi
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | | |
Collapse
|
15
|
Omais S, Hilal RN, Halaby NN, Jaafar C, Ghanem N. Aging entails distinct requirements for Rb at maintaining adult neurogenesis. AGING BRAIN 2022; 2:100041. [PMID: 36908894 PMCID: PMC9997174 DOI: 10.1016/j.nbas.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022] Open
Abstract
Cell cycle proteins play essential roles in regulating embryonic and adult neurogenesis in the mammalian brain. A key example is the Retinoblastoma protein (Rb) whose loss disrupts the whole neurogenic program during brain development, but only results in increased progenitor proliferation in the adult subventricular zone (SVZ) and compromised long-term neuronal survival in the adult olfactory bulb (OB). Whether this holds true of neurogenesis in the aged brain remains unknown. In this study, we find no evidence of irregular proliferation or early commitment defects in the mid-aged (12-month-old) and old-aged (20-month-old) SVZ following tamoxifen-inducible Rb knockout (Rb iKO) in mice. However, we highlight a striking defect in early maturation of Rb-deficient migrating neuroblasts along the rostral migratory stream (RMS), followed by massive decline in neuronal generation inside the aged OB. In the absence of Rb, we also show evidence of incomplete cell cycle re-entry (CCE) along with DNA damage in the young OB, while we find a similar trend towards CCE but no clear signs of DNA damage or neurodegenerative signatures (pTau or Synuclein accumulation) in the aged OB. However, such phenotype could be masked by the severe maturation defect reported above in addition to the natural decline in adult neurogenesis with age. Overall, we show that Rb is required to prevent CCE and DNA damage in adult-born OB neurons, hence maintain neuronal survival. Moreover, while loss of Rb alone is insufficient to trigger seeding of neurotoxic species, this study reveals age-dependent non-monotonic dynamics in regulating neurogenesis by Rb.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Rouba N Hilal
- Department of Biology, American University of Beirut, Lebanon
| | - Nour N Halaby
- Department of Biology, American University of Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
16
|
Mäkelä JA, Toppari J. Retinoblastoma-E2F Transcription Factor Interplay Is Essential for Testicular Development and Male Fertility. Front Endocrinol (Lausanne) 2022; 13:903684. [PMID: 35663332 PMCID: PMC9161260 DOI: 10.3389/fendo.2022.903684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023] Open
Abstract
The retinoblastoma (RB) protein family members (pRB, p107 and p130) are key regulators of cell cycle progression, but also play crucial roles in apoptosis, and stem cell self-renewal and differentiation. RB proteins exert their effects through binding to E2F transcription factors, which are essential developmental and physiological regulators of tissue and organ homeostasis. According to the canonical view, phosphorylation of RB results in release of E2Fs and induction of genes needed for progress of the cell cycle. However, there are eight members in the E2F transcription factor family with both activator (E2F1-3a) and repressor (E2F3b-E2F8) roles, highlighting the functional diversity of RB-E2F pathway. In this review article we summarize the data showing that RB-E2F interaction is a key cell-autonomous mechanism responsible for establishment and maintenance of lifelong male fertility. We also review the expression pattern of RB proteins and E2F transcription factors in the testis and male germ cells. The available evidence supports that RB and E2F family members are widely and dynamically expressed in the testis, and they are known to have versatile roles during spermatogenesis. Knowledge of the function and significance of RB-E2F interplay for testicular development and spermatogenesis comes primarily from gene knock-out (KO) studies. Several studies conducted in Sertoli cell-specific pRB-KO mice have demonstrated that pRB-mediated inhibition of E2F3 is essential for Sertoli cell functional maturation and cell cycle exit, highlighting that RB-E2F interaction in Sertoli cells is paramount to male fertility. Similarly, ablation of either pRB or E2F1 in the germline results in progressive testicular atrophy due to germline stem cell (GSC) depletion, emphasizing the importance of proper RB-E2F interplay for germline maintenance and lifelong sperm production. In summary, while balanced RB-E2F interplay is essential for cell-autonomous maintenance of GSCs and, the pRB-E2F3 system in Sertoli cells is critical for providing GSC niche thus laying the basis for spermatogenesis.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Jorma Toppari,
| |
Collapse
|
17
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ter Huurne M, Stunnenberg HG. G1-phase progression in pluripotent stem cells. Cell Mol Life Sci 2021; 78:4507-4519. [PMID: 33884444 PMCID: PMC8195903 DOI: 10.1007/s00018-021-03797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Verdugo-Sivianes EM, Rojas AM, Muñoz-Galván S, Otero-Albiol D, Carnero A. Mutation of SPINOPHILIN (PPP1R9B) found in human tumors promotes the tumorigenic and stemness properties of cells. Am J Cancer Res 2021; 11:3452-3471. [PMID: 33537097 PMCID: PMC7847670 DOI: 10.7150/thno.53572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: SPINOPHILIN (SPN, PPP1R9B) is an important tumor suppressor involved in the progression and malignancy of different tumors depending on its association with protein phosphatase 1 (PP1) and the ability of the PP1-SPN holoenzyme to dephosphorylate retinoblastoma (pRB). Methods: We performed a mutational analysis of SPN in human tumors, focusing on the region of interaction with PP1 and pRB. We explored the effect of the SPN-A566V mutation in an immortalized non-tumorigenic cell line of epithelial breast tissue, MCF10A, and in two different p53-mutated breast cancer cells lines, T47D and MDA-MB-468. Results: We characterized an oncogenic mutation of SPN found in human tumor samples, SPN-A566V, that affects both the SPN-PP1 interaction and its phosphatase activity. The SPN-A566V mutation does not affect the interaction of the PP1-SPN holoenzyme with pocket proteins pRB, p107 and p130, but it affects its ability to dephosphorylate them during G0/G1 and G1, indicating that the PP1-SPN holoenzyme regulates cell cycle progression. SPN-A566V also promoted stemness, establishing a connection between the cell cycle and stem cell biology via pocket proteins and PP1-SPN regulation. However, only cells with both SPN-A566V and mutant p53 have increased tumorigenic and stemness properties. Conclusions: SPN-A566V, or other equivalent mutations, could be late events that promote tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.
Collapse
|
20
|
Zheng Q, Chen X, Han R, Zhu J, Wang H, Chen L, Song Y, Chen L, Cheng H, Jin N. HPV58 E7 Protein Expression Profile in Cervical Cancer and CIN with Immunohistochemistry. J Cancer 2021; 12:1722-1728. [PMID: 33613760 PMCID: PMC7890325 DOI: 10.7150/jca.50816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The persistent infection of high-risk human papillomavirus (HR-HPV) is one of the most common causes of cervical cancer worldwide, and HPV type 58 (HPV58) is the third most common HPV type in eastern Asia. The E7 oncoprotein is constitutively expressed in HPV58-associated cervical cancer cells and plays a key role during tumorigenesis. This study aimed to assess the HPV58 E7 protein expression in the tissues of cervical cancer and cervical intraepithelial neoplasia (CIN). Methods: A total of 67 HPV58-positive cervical samples were collected, including 25 cervical cancer samples and 42 CIN samples. All the tissues were examined by HPV58 E7, p16INK4a and Ki67 immunohistochemistry (IHC). At last, we analyzed their association with clinical and pathological variables. Results: HPV58 E7 expression was detected in 96% of the HPV58 DNA-positive cervical cancer tissues and 85.7% of HPV58-positive CIN tissues. 65 samples of cervical cancer and CIN tissues had p16-positive staining, while 59 samples were Ki-67 positive. Conclusions: HPV58 E7 protein is highly expressed in both cervical cancer and CIN tissues. HPV58 E7 IHC could be sensitive and specific for evaluating HPV-driven cervical cancer and pre-cancerous lesions, in combination with p16 and Ki-67 IHC.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xianzhen Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Department of Pathology, The First People's Hospital of Fuyang, Hangzhou, Zhejiang Province, China
| | - Lingjing Chen
- Department of Dermatology, Hangzhou Children's Hospital, Hangzhou, Zhejiang Province, China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Luxia Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Na Jin
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Vincent A, Natarajan V, Khetan V, Krishnakumar S, Parameswaran S. Heterozygous retinoblastoma gene mutation compromises in vitro osteogenesis of adipose mesenchymal stem cells - a temporal gene expression study. Exp Cell Res 2020; 396:112263. [PMID: 32890459 DOI: 10.1016/j.yexcr.2020.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
Osteosarcoma (OS) is a bone malignancy affecting children and adolescents. Retinoblastoma (RB) patients with germline RB1 mutations are susceptible to osteosarcoma in the second decade of their life. Several studies, particularly in mice, have revealed a role for RB1 in osteogenesis. Since, there is species specific difference attributed in retinoblastoma tumorigenesis between mice and human, we assumed, it is worthwhile exploring the role of RB1 in osteogenesis and thus onset of osteosarcoma. In this study, we analyzed the temporal gene expression of the osteogenic markers, tumor suppressor genes and hormone receptors associated with growth spurt during in vitro osteogenesis of mesenchymal stem cells derived from orbital adipose tissue of germline RB patients and compared it with those with wild type RB1 gene. Mesenchymal stem cells with the heterozygous RB1 mutation showed reduced expression of RB1 and other tumor suppressor genes and showed deregulation of osteogenic markers which could be an initial step for the onset of osteosarcoma.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Medical Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.
| |
Collapse
|
22
|
p130 And pRb in the Maintenance of Transient Quiescence of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8883436. [PMID: 33014072 PMCID: PMC7519995 DOI: 10.1155/2020/8883436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
An effective regulation of quiescence plays a key role in the differentiation, plasticity, and prevention of stem cells from becoming malignant. The state of quiescence is being controlled by the pRb family proteins which show overlapping functions in cell cycle regulation; however, their roles in controlling the proliferation of mesenchymal stem cells (MSCs) remain to be understood. This study investigated the regulation of transient quiescence using growth curves, proliferation assay, the cytometric evaluation of cell cycle, Western blotting, and the electromobility gel shift assay (EMSA) on synchronized MSCs of the C3H10Т1/2 and control cells with different statuses of pRb proteins. It has been found that functional steady-state level of p130 but not pRb plays a critical role for entering, exiting, and maintenance of transient quiescence in multipotent mesenchymal stem cells.
Collapse
|
23
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
24
|
Zhao N, Wang G, Long S, Hu M, Gao J, Ran X, Wang J, Su Y, Wang T. MicroRNA-34a deficiency leads to impaired wound closure by augmented inflammation in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:447. [PMID: 32395491 PMCID: PMC7210195 DOI: 10.21037/atm.2020.03.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Proper inflammation resolution is critical for cutaneous wound healing and disordered inflammation resolution results in chronic nonhealing wounds. However, the cellular and molecular mechanisms for resolution of inflammation during skin wound healing are not well understood. MicroRNA-34a is regarded as one tumor suppressor with complexed immune regulatory effects, yet its role during skin wound repair is still unclear. Methods Circular full thickness excisional wounds were made on the dorsal skin of C57 mice and miR-34a expression pattern was examined by real time RT-PCR and in situ hybridization. The wound healing rates and histologic morphometric analysis were quantified and compared between wounds treated with antagomir-34a and autologous control antagomir-NC wounds, as well as wounds between miR-34a knockout (KO) and wild type (WT) mice. Immunohistochemistry (IHC) for both MPO and F4/80 were performed to examine the infiltrative neutrophils and macrophages in wounds from miR-34a KO and WT mice. Cytokines including IL-1β, IL-6, TNF-α and IL-10, were detected and analyzed by real time RT-PCR during wound healing. IHC for IL-6 and p-STAT3 were quantified, and WB for p-STAT3 and IL-6R were examined in wounds of miR-34a KO and WT mice. Results We found miR-34a was significantly downregulated in the inflammatory phase and back to normal levels in the proliferative phase. Both topical knockdown wounds miR-34a levels by antagomir gel and systematic knockout miR-34a using KO mice resulted in impaired wound healing with delayed re-epithelialization and augmented inflammation. IHC results indicated that there were more residual infiltrative inflammatory cells in the proliferative phase. Moreover, over-activated IL-6/STAT3 signal pathway was identified in the wounds of miR-34a KO mice. Conclusions Our findings reveal that miR-34a deficiency augments skin wound inflammation response and leads to impaired wound healing, which suggest that targeted inhibition of miR-34a for tissue repair/regeneration should be with serious consideration.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mengjia Hu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jining Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
25
|
Tumor Milieu Controlled by RB Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21072450. [PMID: 32244804 PMCID: PMC7177274 DOI: 10.3390/ijms21072450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.
Collapse
|
26
|
Matteoni S, Abbruzzese C, Villani V, Malorni W, Pace A, Matarrese P, Paggi MG. The influence of patient sex on clinical approaches to malignant glioma. Cancer Lett 2019; 468:41-47. [PMID: 31605777 DOI: 10.1016/j.canlet.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Gliomas are tumors that originate from the glial tissue, thus involving the central nervous system with varying degrees of malignancy. The most aggressive and frequent form is glioblastoma multiforme, a disease characterized by resistance to therapies, frequent recurrences, and extremely poor median survival time. Data on overall glioma case studies demonstrate clear sex disparities regarding incidence, prognosis, drug toxicity, clinical outcome, and, recently, prediction of therapeutic response. In this study, we analyze data in the literature regarding malignant glioma, mainly glioblastoma multiforme, focusing on epidemiological and clinical evaluations. Less discussed issues, such as the role of viral infections, energy metabolism, and predictive aspects concerning the possible use of dedicated therapeutic approaches for male or female patients, will be reported together with different estimated pathogenetic mechanisms underlying astrocyte transformation and glioma chemosensitivity. In this era, where personalized/precision medicine is the most important driver for targeted cancer therapies, the lines of evidence discussed herein strongly suggest that clinical approaches to malignant glioma should consider the patient's sex. Furthermore, retrospectively revising previous clinical studies considering patient sex as a crucial variable is recommended.
Collapse
Affiliation(s)
- Silvia Matteoni
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Veronica Villani
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Walter Malorni
- Istituto Superiore di Sanità, 00161, Rome, Italy; University of Tor Vergata, 00133, Rome, Italy
| | - Andrea Pace
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | - Marco G Paggi
- IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
27
|
Fernandez-Nicolas A, Xu D, Yajima M. A tumor suppressor Retinoblastoma1 is essential for embryonic development in the sea urchin. Dev Dyn 2019; 248:1273-1285. [PMID: 31515896 DOI: 10.1002/dvdy.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Embryonic cells and cancer cells share various cellular characteristics important for their functions. It has been thus proposed that similar mechanisms of regulation may be present in these otherwise disparate cell types. RESULTS To explore how regulative embryonic cells are fundamentally different from cancerous cells, we report here that a fine balance of a tumor suppressor protein Retinoblastoma1 (Rb1) and a germline factor Vasa are important for proper cell proliferation and differentiation of the somatic cells during embryogenesis of the sea urchin. Rb1 knockdown blocked embryonic development and induced Vasa accumulation in the entire embryo, while its overexpression resulted in a smaller-sized embryo with differentiated body structures. These results suggest that a titrated level of Rb1 protein may be essential for a proper balance of cell proliferation and differentiation during development. Vasa knockdown or overexpression, on the other hand, reduced or increased Rb1 protein expression, respectively. CONCLUSIONS Taken together, it appears that Vasa protein positively regulates Rb1 protein while Rb1 protein negatively regulates Vasa protein, balancing the act of these two antagonistic molecules in somatic cells. This mechanism may provide a fine control of cell proliferation and differentiation, which is essential for regulative embryonic development.
Collapse
Affiliation(s)
| | - Derek Xu
- MCB Department, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island
| |
Collapse
|
28
|
Hsu J, Arand J, Chaikovsky A, Mooney NA, Demeter J, Brison CM, Oliverio R, Vogel H, Rubin SM, Jackson PK, Sage J. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun 2019; 10:2939. [PMID: 31270324 PMCID: PMC6610666 DOI: 10.1038/s41467-019-10901-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2019] [Indexed: 01/22/2023] Open
Abstract
E2F transcription factors are central regulators of cell division and cell fate decisions. E2F4 often represents the predominant E2F activity in cells. E2F4 is a transcriptional repressor implicated in cell cycle arrest and whose repressive activity depends on its interaction with members of the RB family. Here we show that E2F4 is important for the proliferation and the survival of mouse embryonic stem cells. In these cells, E2F4 acts in part as a transcriptional activator that promotes the expression of cell cycle genes. This role for E2F4 is independent of the RB family. Furthermore, E2F4 functionally interacts with chromatin regulators associated with gene activation and we observed decreased histone acetylation at the promoters of cell cycle genes and E2F targets upon loss of E2F4 in RB family-mutant cells. Taken together, our findings uncover a non-canonical role for E2F4 that provide insights into the biology of rapidly dividing cells. E2F transcription factors are regulators of cell division and cell fate decisions. Here the authors show that E2F4 is important for proliferation and survival of mouse ESCs, independent of the RB family, and that E2F4 interacts with chromatin regulators associated with gene activation.
Collapse
Affiliation(s)
- Jenny Hsu
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julia Arand
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Andrea Chaikovsky
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Caileen M Brison
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Romane Oliverio
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Pathology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julien Sage
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA. .,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
30
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
31
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Zheng Y, Liu X. Review: Chromatin organization in plant and animal stem cell maintenance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:173-179. [PMID: 30824049 DOI: 10.1016/j.plantsci.2018.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Stem cells have self-renewal capacity and can differentiate into specialized cell types. Although the origin, form and differentiated destinations of stem cells differ between animals and plants, they are regulated by similar epigenetic mechanisms during differentiation. There is increasing evidence that the three-dimensional (3D) genome organization plays important roles in gene expression regulation during stem cell differentiation. In plant cells, however, studies related to chromatin interaction in gene expression regulation are just beginning and will be a hot topic in the future. In this review, we summarized the similarities of plant and animal stem cell niches and their function in stem cell maintenance, the roles of chromatin conformation changes in regulating gene expression and recent findings about chromatin organization in plant cells at genome-wide and loci-specific levels.
Collapse
Affiliation(s)
- Yan Zheng
- National Marine Data and Information Service, Tianjin 300100, China; Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China
| | - Xigang Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Rd, Shijiazhuang, 050021 China.
| |
Collapse
|
33
|
Abstract
The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.
Collapse
Affiliation(s)
- Frederick A Dick
- London Regional Cancer Program, Children's Health Research Institute, Western University, London, Ontario, Canada.
- London Regional Cancer Program, Department of Biochemistry, Western University, London, Ontario, Canada.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
34
|
Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR, McGrail M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech 2018; 11:11/6/dmm034124. [PMID: 29914980 PMCID: PMC6031359 DOI: 10.1242/dmm.034124] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafish retinoblastoma 1 (rb1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbb3a oncogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptomes shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbbp4). Germline mutant analysis confirms that zebrafish rb1, rbbp4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbbp4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CRISPR targeting plus live imaging of histone-H2A.F/Z-GFP fusion protein in developing larval brain to rapidly test the role of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbbp4 and its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in RB1 mutant brain cancer cells. This article has an associated First Person interview with the first author of the paper. Summary: This study shows that chromatin remodelers that are overexpressed in a zebrafish model of RB1 mutant brain cancer are required for neural progenitor proliferation and survival, providing insight into potential mechanisms that drive tumor growth.
Collapse
Affiliation(s)
- Laura E Schultz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey A Haltom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Staci L Solin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Trevor J Weiss
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jordan A Helmer
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Elizabeth J Sandquist
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Heather R Shive
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Ejaz A, Mattesich M, Zwerschke W. Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. Aging (Albany NY) 2017; 9:860-879. [PMID: 28316325 PMCID: PMC5391236 DOI: 10.18632/aging.101197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Abstract
Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs) derived from human subcutaneous white adipose tissue (sWAT). We demonstrate that DIRAS3 knock-down (KD) in ASCs induces activation of Akt-mTOR signaling and proliferation arrest. DIRAS3 KD ASCs lose the potential to form colonies and are negative for Ki-67. Moreover, silencing of DIRAS3 results in a premature senescence phenotype. This is characterized by senescence-associated β-galactosidase positive enlarged ASCs containing increased p16INK4A level and activated retinoblastoma protein. DIRAS3 KD ASCs form senescence-associated heterochromatic foci as shown by increased level of γ-H2A.X positive foci. Furthermore, these cells express a senescence-associated secretory phenotype characterized by increased interleukin-8 secretion. Human DIRAS3 KD ASCs develop also a senescence phenotype in sWAT of SCID mice. Finally, we show that DIRAS3 KD in ASCs stimulates both adipogenic differentiation and premature senescence. In conclusion, our data suggest that silencing of DIRAS3 in ASCs and subsequently hyper-activation of Akt-mTOR drives adipogenesis and premature senescence. Moreover, differentiating ASCs and/or mature adipocytes may acquire features of cellular senescence.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
36
|
Zacksenhaus E, Shrestha M, Liu JC, Vorobieva I, Chung PE, Ju Y, Nir U, Jiang Z. Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends Cancer 2017; 3:768-779. [DOI: 10.1016/j.trecan.2017.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
|
37
|
Singh GK, Yadav V, Singh P, Bhowmik KT. Radiation-Induced Malignancies: Our Experiences With Five Cases. World J Oncol 2017; 7:119-123. [PMID: 28983376 PMCID: PMC5624653 DOI: 10.14740/wjon991w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy is one of the modalities of treatment of malignancies. Radiation-induced malignancies (RIMs) are late complications of radiotherapy, seen among the survivors of both adult and pediatric cancers. Mutagenesis of normal tissues is the likely basis for RIMs. Till date, RIM cannot be differentiated from primary cancers. We present a series of five patients who were treated at our institute between 2002 and 2016 and were subsequently diagnosed with RIM. Out of five patients, there were two cases of sarcomas, two of carcinomas and one neuroendocrine carcinoma of tongue (rare entity). Separate treatment guidelines are not available for RIM, so the treatment given was same as primary malignancies.
Collapse
Affiliation(s)
- Gunjesh Kumar Singh
- Department of Radiotherapy, VMMC and Safdarjung Hospital, New Delhi 110029, India
| | - Vikas Yadav
- Department of Radiotherapy, VMMC and Safdarjung Hospital, New Delhi 110029, India
| | - Pragya Singh
- Department of Pathology, VMMC and Safdarjung Hospital, New Delhi 110029, India
| | - K T Bhowmik
- Department of Radiotherapy, VMMC and Safdarjung Hospital, New Delhi 110029, India
| |
Collapse
|
38
|
Vélez-Cruz R, Johnson DG. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int J Mol Sci 2017; 18:ijms18081776. [PMID: 28812991 PMCID: PMC5578165 DOI: 10.3390/ijms18081776] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is known as a master regulator of the cell cycle. RB is mutated or functionally inactivated in the majority of human cancers. This transcriptional regulator exerts its function in cell cycle control through its interaction with the E2F family of transcription factors and with chromatin remodelers and modifiers that contribute to the repression of genes important for cell cycle progression. Over the years, studies have shown that RB participates in multiple processes in addition to cell cycle control. Indeed, RB is known to interact with over 200 different proteins and likely exists in multiple complexes. RB, in some cases, acts through its interaction with E2F1, other members of the pocket protein family (p107 and p130), and/or chromatin remodelers and modifiers. RB is a tumor suppressor with important chromatin regulatory functions that affect genomic stability. These functions include the role of RB in DNA repair, telomere maintenance, chromosome condensation and cohesion, and silencing of repetitive regions. In this review we will discuss recent advances in RB biology related to RB, partner proteins, and their non-transcriptional functions fighting back against genomic instability.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
- Department of Biochemistry, Midwestern University, Chicago College of Osteopathic Medicine, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|
39
|
Kitajima S, Takahashi C. Intersection of retinoblastoma tumor suppressor function, stem cells, metabolism, and inflammation. Cancer Sci 2017; 108:1726-1731. [PMID: 28865172 PMCID: PMC5581511 DOI: 10.1111/cas.13312] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/27/2022] Open
Abstract
The Retinoblastoma (RB) tumor suppressor regulates G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatment‐resistant cancers, it has become increasingly clear that, in the majority of cancers, somatic RB inactivation occurs during tumor progression. Furthermore, despite the presence of deregulation of cell cycle control due to an INK4A deletion, additional CCND amplification and/or other mutations in the RB pathway, mutation or deletion of the RB gene is often observed during cancer progression. Of note, RB inactivation during cancer progression not only facilitates G1/S transition but also enhances some characteristics of malignancy, including altered drug sensitivity and a return to the undifferentiated state. Recently, we reported that RB inactivation enhances pro‐inflammatory signaling through stimulation of the interleukin‐6/STAT3 pathway, which directly promotes various malignant features of cancer cells. In this review, we highlight the consequences of RB inactivation during cancer progression, and discuss the biological and pathological significance of the interaction between RB and pro‐inflammatory signaling.
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
40
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Abstract
In this review, Dyson summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients? The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene to be molecularly defined. RB1 mutations occur in almost all familial and sporadic forms of retinoblastoma, and this gene is mutated at variable frequencies in a variety of other human cancers. Because of its early discovery, the recessive nature of RB1 mutations, and its frequency of inactivation, RB1 is often described as a prototype for the class of tumor suppressor genes. Its gene product (pRB) regulates transcription and is a negative regulator of cell proliferation. Although these general features are well established, a precise description of pRB's mechanism of action has remained elusive. Indeed, in many regards, pRB remains an enigma. This review summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients?
Collapse
|
42
|
The RB–IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity. Oncogene 2017; 36:5145-5157. [DOI: 10.1038/onc.2017.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
|
43
|
Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, Maruyama D, Forner J, Medzihradszky A, Wijnker E, Harashima H, Lu Y, Schmidt A, Guthörl D, Logroño RS, Guan Y, Pochon G, Grossniklaus U, Laux T, Higashiyama T, Lohmann JU, Nowack MK, Schnittger A. RETINOBLASTOMA RELATED1 mediates germline entry in
Arabidopsis. Science 2017; 356:356/6336/eaaf6532. [DOI: 10.1126/science.aaf6532] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 02/06/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
|
44
|
|
45
|
Hadjimichael C, Chanoumidou K, Nikolaou C, Klonizakis A, Theodosi GI, Makatounakis T, Papamatheakis J, Kretsovali A. Promyelocytic Leukemia Protein Is an Essential Regulator of Stem Cell Pluripotency and Somatic Cell Reprogramming. Stem Cell Reports 2017; 8:1366-1378. [PMID: 28392218 PMCID: PMC5425614 DOI: 10.1016/j.stemcr.2017.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Promyelocytic leukemia protein (PML), the main constituent of PML nuclear bodies, regulates various physiological processes in different cell types. However, little is known about its functions in embryonic stem cells (ESC). Here, we report that PML contributes to ESC self-renewal maintenance by controlling cell-cycle progression and sustaining the expression of crucial pluripotency factors. Transcriptomic analysis and gain- or loss-of-function approaches showed that PML-deficient ESC exhibit morphological, metabolic, and growth properties distinct to naive and closer to the primed pluripotent state. During differentiation of embryoid bodies, PML influences cell-fate decisions between mesoderm and endoderm by controlling the expression of Tbx3. PML loss compromises the reprogramming ability of embryonic fibroblasts to induced pluripotent stem cells by inhibiting the transforming growth factor β pathway at the very early stages. Collectively, these results designate PML as a member of the regulatory network for ESC naive pluripotency and somatic cell reprogramming. PML is essential for the maintenance of naive pluripotent cells PML prevents the naive to primed pluripotency transition PML influences cell-fate commitment through Tbx3 regulation PML is required for iPSCs formation via regulation of TGF signaling pathway
Collapse
Affiliation(s)
- Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Konstantina Chanoumidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece; Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, Alexandroupolis, Evros 68100, Greece
| | | | | | | | - Takis Makatounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete 70013, Greece.
| |
Collapse
|
46
|
Singh GK, Yadav V, Singh P, Bhowmik KT. Radiation-Induced Malignancies Making Radiotherapy a "Two-Edged Sword": A Review of Literature. World J Oncol 2017; 8:1-6. [PMID: 28983377 PMCID: PMC5624654 DOI: 10.14740/wjon996w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
Radiotherapy is one of the modalities of treatment of malignancies. Radiation-induced malignancies (RIMs) are late complications of radiotherapy, seen among the survivors of both adult and pediatric cancers. Mutagenesis of normal tissues is the basis for RIMs. The aim of this review of literature was to discuss epidemiology, factors affecting and different settings in which RIM occur.
Collapse
Affiliation(s)
- Gunjesh Kumar Singh
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - Vikas Yadav
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - Pragya Singh
- Department of Pathology, VMMC & Safdarjung Hospital, New Delhi 110029, India
| | - K T Bhowmik
- Department of Radiotherapy, VMMC & Safdarjung Hospital, New Delhi 110029, India
| |
Collapse
|
47
|
Fong BC, Slack RS. RB: An essential player in adult neurogenesis. NEUROGENESIS 2017; 4:e1270382. [PMID: 28229086 DOI: 10.1080/23262133.2016.1270382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022]
Abstract
The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified. Members of the cell cycle machinery have demonstrated key roles in regulating adult neural stem cell (NSC) quiescence and the size of the adult-born neuronal population. The retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are independent from its classical role as a tumor suppressor. The recent study by Vandenbosch et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future studies must consider Rb as part of a larger network of regulatory effectors, including the other members of the Rb family, p107 and p130. This will help elucidate the contribution of Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role in regulating the size and fate of the neurogenic niche.
Collapse
Affiliation(s)
- Bensun C Fong
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| |
Collapse
|
48
|
Rocca A, Schirone A, Maltoni R, Bravaccini S, Cecconetto L, Farolfi A, Bronte G, Andreis D. Progress with palbociclib in breast cancer: latest evidence and clinical considerations. Ther Adv Med Oncol 2017; 9:83-105. [PMID: 28203301 PMCID: PMC5298405 DOI: 10.1177/1758834016677961] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deregulation of the cell cycle is a hallmark of cancer, and research on cell cycle control has allowed identification of potential targets for anticancer treatment. Palbociclib is a selective inhibitor of the cyclin-dependent kinases 4 and 6 (CDK4/6), which are involved, with their coregulatory partners cyclin D, in the G1-S transition. Inhibition of this step halts cell cycle progression in cells in which the involved pathway, including the retinoblastoma protein (Rb) and the E2F family of transcription factors, is functioning, although having been deregulated. Among breast cancers, those with functioning cyclin D-CDK4/6-Rb-E2F are mainly hormone-receptor (HR) positive, with some HER2-positive and rare triple-negative cases. Deregulation results from genetic or otherwise occurring hyperactivation of molecules subtending cell cycle progression, or inactivation of cell cycle inhibitors. Based on results of randomized clinical trials, palbociclib was granted accelerated approval by the US Food and Drug Administration (FDA) for use in combination with letrozole as initial endocrine-based therapy for metastatic disease in postmenopausal women with HR-positive, HER2-negative breast cancer, and was approved for use in combination with fulvestrant in women with HR-positive, HER2-negative advanced breast cancer with disease progression following endocrine therapy. This review provides an update of the available knowledge on the cell cycle and its regulation, on the alterations in cyclin D-CDK4/6-Rb-E2F axis in breast cancer and their roles in endocrine resistance, on the preclinical activity of CDK4/6 inhibitors in breast cancer, both as monotherapy and as partners of combinatorial synergic treatments, and on the clinical development of palbociclib in breast cancer.
Collapse
Affiliation(s)
- Andrea Rocca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, Meldola, FC 47014, Italy
| | - Alessio Schirone
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Roberta Maltoni
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Sara Bravaccini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Lorenzo Cecconetto
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Alberto Farolfi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giuseppe Bronte
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Daniele Andreis
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
49
|
Helsel AR, Yang QE, Oatley MJ, Lord T, Sablitzky F, Oatley JM. ID4 levels dictate the stem cell state in mouse spermatogonia. Development 2017; 144:624-634. [PMID: 28087628 DOI: 10.1242/dev.146928] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states.
Collapse
Affiliation(s)
- Aileen R Helsel
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Qi-En Yang
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, QH 810001, China
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tessa Lord
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Fred Sablitzky
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
50
|
Johnson J, Thijssen B, McDermott U, Garnett M, Wessels LF, Bernards R. Targeting the RB-E2F pathway in breast cancer. Oncogene 2016; 35:4829-35. [PMID: 26923330 PMCID: PMC4950965 DOI: 10.1038/onc.2016.32] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
Mutations of the retinoblastoma tumor-suppressor gene (RB1) or components regulating the CDK-RB-E2F pathway have been identified in nearly every human malignancy. Re-establishing cell cycle control through cyclin-dependent kinase (CDK) inhibition has therefore emerged as an attractive option in the development of targeted cancer therapy. The most successful example of this today is the use of the CDK4/6 inhibitor palbociclib combined with aromatase inhibitors for the treatment of estrogen receptor-positive breast cancers. Multiple studies have demonstrated that the CDK-RB-E2F pathway is critical for the control of cell proliferation. More recently, studies have highlighted additional roles of this pathway, especially E2F transcription factors themselves, in tumor progression, angiogenesis and metastasis. Specific E2Fs also have prognostic value in breast cancer, independent of clinical parameters. We discuss here recent advances in understanding of the RB-E2F pathway in breast cancer. We also discuss the application of genome-wide genetic screening efforts to gain insight into synthetic lethal interactions of CDK4/6 inhibitors in breast cancer for the development of more effective combination therapies.
Collapse
Affiliation(s)
- Jackie Johnson
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom CB10 1SA
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom CB10 1SA
| | - Lodewyk F.A. Wessels
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| |
Collapse
|