1
|
Pulido-Sánchez M, Leal-Morales A, López-Sánchez A, Cava F, Govantes F. Spatial, temporal and numerical regulation of polar flagella assembly in Pseudomonas putida. Microbiol Res 2025; 292:128033. [PMID: 39709681 DOI: 10.1016/j.micres.2024.128033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The Gram-negative bacterium Pseudomonas putida bears a tuft of flagella at a single cell pole. New flagella must be assembled de novo every cell cycle to secure motility of both daughter cells. Here we show that the coordinated action of FimV, FlhF and FleN sets the location, timing and number of flagella assembled. The polar landmark proteins FimV and FlhF are independently targeted to the nascent new pole during or shortly after cell division, but FimV stabilizes FlhF association with the cell poles. FlhF determines the polar position of the flagella by targeting early flagellar components to the cell pole and preventing their nucleation at non-polar sites. FlhF also promotes efficient flagellar assembly and indirectly stimulates Class III flagellar promoter activation by promoting secretion of the anti-FliA anti-σ factor FlgM. The MinD-like ATPase FleN partitions between the cell poles and the cytoplasm. Cytoplasmic FleN regulates flagellar number by preventing excessive accumulation of FlhF at the cell poles that may otherwise lead to hyperflagellation, likely by antagonizing FleQ-dependent transcriptional activation. FimV is essential to FleN polar location. FimV and FleN temporally regulate the onset of flagellar assembly by preventing premature polar targeting of FlhF and the ensuing premature targeting of additional flagellar components. Our results shed new light on the mechanisms that ensure the timely assembly of the appropriate number of flagella at the correct polar location in polarly flagellated bacteria.
Collapse
Affiliation(s)
- Marta Pulido-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla ES-41013, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla ES-41013, Spain.
| |
Collapse
|
2
|
Campbell IW, Dehinwal R, Morano AA, Dailey KG, Zingl FG, Waldor MK. A connection between Vibrio cholerae motility and inter-animal transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637895. [PMID: 39990368 PMCID: PMC11844489 DOI: 10.1101/2025.02.12.637895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Outbreaks of cholera are caused by the highly transmissive pathogen Vibrio cholerae . Here, a transposon screen revealed that inactivation of the V. cholerae motility-linked gene motV increases infant mouse intestinal colonization. Compared to wild-type V. cholerae , a Δ motV mutant, which exhibits heightened motility in the form of constitutive straight swimming, localizes to the crypts earlier in infection and over a larger area of the small intestine. Aberrant localization of the mutant was associated with an increased number of V. cholerae initiating infection, and elevated pathogen burden, diarrhea, and lethality. Moreover, the deletion of motV causes V. cholerae to transmit from infected suckling mice to naïve littermates more efficiently. Even in the absence of cholera toxin, the Δ motV mutant continues to transmit between animals, although less than in the presence of toxin, indicating that phenotypes other than cholera toxin-driven diarrhea contribute to transmission. Collectively, this work provides experimental evidence linking intra-animal bottlenecks, colonization, and disease to inter-animal transmission.
Collapse
|
3
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
4
|
Dornes A, Schmidt LM, Mais CN, Hook JC, Pané-Farré J, Kressler D, Thormann K, Bange G. Polar confinement of a macromolecular machine by an SRP-type GTPase. Nat Commun 2024; 15:5797. [PMID: 38987236 PMCID: PMC11236974 DOI: 10.1038/s41467-024-50274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.
Collapse
Affiliation(s)
- Anita Dornes
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Lisa Marie Schmidt
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - John C Hook
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Jan Pané-Farré
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Dieter Kressler
- University of Fribourg, Department of Biology, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kai Thormann
- Justus-Liebig-Universität, Department of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
- Max-Planck-Institute for terrestrial Microbiology, Molecular Physiology of Microbes, Karl-von-Frisch Strasse 14, 35043, Marburg, Germany.
| |
Collapse
|
5
|
Letzkus M, Trela C, Mera PE. Three factors ParA, TipN, and DnaA-mediated chromosome replication initiation are contributors of centromere segregation in Caulobacter crescentus. Mol Biol Cell 2024; 35:ar68. [PMID: 38568781 PMCID: PMC11151105 DOI: 10.1091/mbc.e23-12-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The ability of bacteria to maintain chromosomal integrity throughout their life cycle is crucial for survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. Cells with tipN knocked out display subtle segregation defects of the centromere-like region parS. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first confirm that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.
Collapse
Affiliation(s)
- Morgan Letzkus
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Corey Trela
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
6
|
Uesaka K, Inaba K, Nishioka N, Kojima S, Homma M, Ihara K. Deciphering the genomes of motility-deficient mutants of Vibrio alginolyticus 138-2. PeerJ 2024; 12:e17126. [PMID: 38515459 PMCID: PMC10956519 DOI: 10.7717/peerj.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The motility of Vibrio species plays a pivotal role in their survival and adaptation to diverse environments and is intricately associated with pathogenicity in both humans and aquatic animals. Numerous mutant strains of Vibrio alginolyticus have been generated using UV or EMS mutagenesis to probe flagellar motility using molecular genetic approaches. Identifying these mutations promises to yield valuable insights into motility at the protein structural physiology level. In this study, we determined the complete genomic structure of 4 reference specimens of laboratory V. alginolyticus strains: a precursor strain, V. alginolyticus 138-2, two strains showing defects in the lateral flagellum (VIO5 and YM4), and one strain showing defects in the polar flagellum (YM19). Subsequently, we meticulously ascertained the specific mutation sites within the 18 motility-deficient strains related to the polar flagellum (they fall into three categories: flagellar-deficient, multi-flagellar, and chemotaxis-deficient strains) by whole genome sequencing and mapping to the complete genome of parental strains VIO5 or YM4. The mutant strains had an average of 20.6 (±12.7) mutations, most of which were randomly distributed throughout the genome. However, at least two or more different mutations in six flagellar-related genes were detected in 18 mutants specifically selected as chemotaxis-deficient mutants. Genomic analysis using a large number of mutant strains is a very effective tool to comprehensively identify genes associated with specific phenotypes using forward genetics.
Collapse
Affiliation(s)
- Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Keita Inaba
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Noriko Nishioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Letzkus M, Trela C, Mera PE. TipN's involvement with centromere segregation in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572679. [PMID: 38187783 PMCID: PMC10769339 DOI: 10.1101/2023.12.20.572679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bacteria's ability to maintain chromosomal integrity throughout their life cycle is crucial for their survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. However, cells with tipN knocked out display subtle parS segregation defects. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first demonstrate that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.
Collapse
Affiliation(s)
- Morgan Letzkus
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Corey Trela
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Matusiak I, Strzałka A, Wadach P, Gongerowska-Jac M, Szwajczak E, Szydłowska-Helbrych A, Kepplinger B, Pióro M, Jakimowicz D. The interplay between the polar growth determinant DivIVA, the segregation protein ParA, and their novel interaction partner PapM controls the Mycobacterium smegmatis cell cycle by modulation of DivIVA subcellular distribution. Microbiol Spectr 2023; 11:e0175223. [PMID: 37966202 PMCID: PMC10714820 DOI: 10.1128/spectrum.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.
Collapse
Affiliation(s)
- Izabela Matusiak
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Patrycja Wadach
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Gongerowska-Jac
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
9
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
10
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
12
|
Pląskowska K, Makowski Ł, Strzałka A, Zakrzewska-Czerwińska J. Binary or Nonbinary Fission? Reproductive Mode of a Predatory Bacterium Depends on Prey Size. mBio 2023:e0077223. [PMID: 37162334 DOI: 10.1128/mbio.00772-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Most bacteria, including model organisms such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, reproduce by binary fission. However, some bacteria belonging to various lineages, including antibiotic-producing Streptomyces and predatory Bdellovibrio, proliferate by nonbinary fission, wherein three or more chromosome copies are synthesized and the resulting multinucleoid filamentous cell subdivides into progeny cells. Here, we demonstrate for the first time that the predatory bacterium Bdellovibrio bacteriovorus reproduces through both binary and nonbinary fission inside different prey bacteria. Switching between the two modes correlates with the prey size. In relatively small prey cells, B. bacteriovorus undergoes binary fission; the FtsZ ring assembles in the midcell, and the mother cell splits into two daughter cells. In larger prey cells, B. bacteriovorus switches to nonbinary fission and creates multiple asynchronously assembled FtsZ rings to produce three or more daughter cells. Completion of bacterial cell cycle critically depends on precise spatiotemporal coordination of chromosome replication with other cell cycle events, including cell division. We show that B. bacteriovorus always initiates chromosome replication at the invasive pole of the cell, but the spatiotemporal choreography of subsequent steps depends on the fission mode and/or the number of progeny cells. In nonbinary dividing filaments producing five or more progeny cells, the last round(s) of replication may also be initiated at the noninvasive pole. Altogether, we find that B. bacteriovorus reproduces through bimodal fission and that extracellular factors, such as the prey size, can shape replication choreography, providing new insights about bacterial life cycles. IMPORTANCE Most eukaryotic and bacterial cells divide by binary fission, where one mother cell produces two progeny cells, or, rarely, by nonbinary fission. All bacteria studied to date use only one of these two reproduction modes. We demonstrate for the first time that a predatory bacterium, Bdellovibrio bacteriovorus, exhibits bimodal fission and the mode of division depends on the size of the prey bacterium inside which B. bacteriovorus grows. This work provides key insights into the mode and dynamics of B. bacteriovorus proliferation in different pathogens that pose a major threat to human health due to their emerging antibiotic resistance (Proteus mirabilis, Salmonella enterica, and Shigella flexneri). The use of predatory bacteria such as B. bacteriovorus is currently regarded as a promising strategy to kill antibiotic-resistant pathogens. We find that B. bacteriovorus employs different chromosome replication choreographies and division modes when preying on those pathogens. Our findings may facilitate the design of efficient pathogen elimination strategies.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Łukasz Makowski
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
13
|
Das S, Chatterjee A, Datta PP. Knockdown Experiment Reveals an Essential GTPase CgtA's Involvement in Growth, Viability, Motility, Morphology, and Persister Phenotypes in Vibrio cholerae. Microbiol Spectr 2023; 11:e0318122. [PMID: 36916969 PMCID: PMC10100748 DOI: 10.1128/spectrum.03181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
CgtA is an essential bacterial GTPase consisting of a highly conserved N-terminal Spo0B-associated GTP-binding protein (Obg) domain, a central GTPase domain, and a variable C-terminal domain (CTD). This study reports global changes in the proteome and transcriptome of wild-type (Wt) versus full-length CgtA-depleted Vibrio cholerae in minimal media. Comparative transcriptome sequencing (RNA-Seq), followed by comparative proteomic analyses, revealed that the knockdown of cgtA significantly altered expressions of 311 proteins involved in diverse cellular activities, many of which are associated with the survival of V. cholerae. Various intracellular functional roles of CgtA in growth, viability, motility, morphology, and persister phenotypes in V. cholerae are revealed based on subsequent confirmatory experiments. Furthermore, a more sustained mRNA expression pattern of cgtA in a minimal medium than in a rich medium was also observed for Wt V. cholerae, where the highest level of mRNA expression of cgtA was observed during the logarithmic growth phase. Thereby, we propose that minimal medium-associated reduced growth rate coupled with cgtA depletion aggravates the intracellular stress in V. cholerae, interrupting vital cellular processes. The functional role of the CTD in V. cholerae is not fully understood. Hence, to specifically investigate the intracellular role of the 57-amino-acid-long CTD of CgtAVC, the CTD-only portion of CgtA was deleted. Subsequent proteomics studies revealed an altered expression of 240 proteins in the CgtA(ΔCTD) mutant, having major overlap with the full-length cgtA-deleted condition. Overall, our study reveals an alternative facet of the survival mechanism of V. cholerae during nutritional downshift as per the concomitant consequences of cgtA depletion. IMPORTANCE It is very important that we must find new drug target proteins from multidrug-resistant human-pathogenic organisms like V. cholerae. CgtA is among such potential candidates, and here, we are reporting about some newly identified cellular roles of it that are important for the survival of V. cholerae. Briefly, we knocked down the full-length cgtA gene, as well as did a partial deletion of this gene from the V. cholerae genome followed by RNA-Seq and proteomics studies. Results from our study revealed up- and downregulation of several known and unknown genes and proteins as the effect of the cgtA knockdown experiment. Also, we have presented some interesting observations that are linked with cgtA for growth, viability, motility, morphology, and persister phenotypes in V. cholerae. Our study enhances the importance of CgtA and paves the way for further exploration based on our provided data.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
14
|
Lloyd CJ, Klose KE. The Vibrio Polar Flagellum: Structure and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:77-97. [PMID: 36792872 DOI: 10.1007/978-3-031-22997-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Here we discuss the structure and regulation of the Vibrio flagellum and its role in the virulence of pathogenic species. We will cover some of the novel insights into the structure of this nanomachine that have recently been enabled by cryoelectron tomography. We will also highlight the recent genetic studies that have increased our understanding in flagellar synthesis specifically at the bacterial cell pole, temporal regulation of flagellar genes, and how the flagellum enables directional motility through Run-Reverse-Flick cycles.
Collapse
Affiliation(s)
- Cameron J Lloyd
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX, USA.,Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, TX, USA
| | - Karl E Klose
- South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio, San Antonio, TX, USA. .,Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, TX, USA.
| |
Collapse
|
15
|
Abstract
In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.
Collapse
|
16
|
Homma M, Takekawa N, Fujiwara K, Hao Y, Onoue Y, Kojima S. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus. Genes Cells 2022; 27:568-578. [PMID: 35842835 DOI: 10.1111/gtc.12975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazushi Fujiwara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuxi Hao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Pombo JP, Ebenberger SP, Müller AM, Wolinski H, Schild S. Impact of Gene Repression on Biofilm Formation of Vibrio cholerae. Front Microbiol 2022; 13:912297. [PMID: 35722322 PMCID: PMC9201469 DOI: 10.3389/fmicb.2022.912297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, is a facultative intestinal pathogen which can also survive in aquatic ecosystems in the form of biofilms, surface-associated microbial aggregates embedded in an extracellular matrix, which protects them from predators and hostile environmental factors. Biofilm-derived bacteria and biofilm aggregates are considered a likely source for cholera infections, underscoring the importance of V. cholerae biofilm research not just to better understand bacterial ecology, but also cholera pathogenesis in the human host. While several studies focused on factors induced during biofilm formation, genes repressed during this persistence stage have been fairly neglected. In order to complement these previous studies, we used a single cell-based transcriptional reporter system named TetR-controlled recombination-based in-biofilm expression technology (TRIBET) and identified 192 genes to be specifically repressed by V. cholerae during biofilm formation. Predicted functions of in-biofilm repressed (ibr) genes range from metabolism, regulation, surface association, transmembrane transport as well as motility and chemotaxis. Constitutive (over)-expression of these genes affected static and dynamic biofilm formation of V. cholerae at different stages. Notably, timed expression of one candidate in mature biofilms induced their rapid dispersal. Thus, genes repressed during biofilm formation are not only dispensable for this persistence stage, but their presence can interfere with ordered biofilm development. This work thus contributes new insights into gene silencing during biofilm formation of V. cholerae.
Collapse
Affiliation(s)
- Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
18
|
Possoz C, Yamaichi Y, Galli E, Ferat JL, Barre FX. Vibrio cholerae Chromosome Partitioning without Polar Anchoring by HubP. Genes (Basel) 2022; 13:genes13050877. [PMID: 35627261 PMCID: PMC9140986 DOI: 10.3390/genes13050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.
Collapse
|
19
|
Abstract
Many pathogens or symbionts of animals and plants contain multiple replicons, a configuration called a multipartite genome. Multipartite genomes enable those species to replicate their genomes faster and better adapt to new niches. Despite their prevalence, the mechanisms by which multipartite genomes are stably maintained are poorly understood. Agrobacterium tumefaciens is a plant pathogen that contains four replicons: a circular chromosome (Ch1), a linear chromosome (Ch2), and two large plasmids. Recent work indicates that their replication origins are clustered at the cell poles in a manner that depends on their ParB family centromeric proteins: ParB1 for Ch1 and individual RepB paralogs for Ch2 and the plasmids. However, understanding of these interactions and how they contribute to genome maintenance is limited. By combining genome-wide chromosome conformation capture (Hi-C) assays, chromatin-immunoprecipitation sequencing (ChIP-seq), and live cell fluorescence microscopy, we provide evidence here that centromeric clustering is mediated by interactions between these centromeric proteins. We further show that the disruption of centromere clustering results in the loss of replicons. Our data establish the role of centromeric clustering in multipartite genome stability. IMPORTANCE About 10% of sequenced bacteria have multiple replicons, also known as multipartite genomes. How these multipartite genomes are maintained is still poorly understood. Here, we use Agrobacterium tumefaciens as a model and show that the replication origins of the four replicons are clustered through direct interactions between the centromeric proteins; disruption of origin clustering leads to the loss of replicons. Thus, our study provided evidence that centromeric clustering is important for maintaining multipartite genomes.
Collapse
|
20
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
21
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
22
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
23
|
Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, Connolley L, Giacomelli G, Feddersen H, Corrales-Guerrero L, Giammarinaro PI, Hanßmann J, Bramkamp M, Viollier PH, Murray S, Schäfer LV, Bange G, Thanbichler M. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell 2021; 81:3992-4007.e10. [PMID: 34562373 DOI: 10.1016/j.molcel.2021.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023]
Abstract
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Connolley
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Helge Feddersen
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Seán Murray
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
24
|
Takekawa N, Nishikino T, Hori K, Kojima S, Imada K, Homma M. ZomB is essential for chemotaxis of Vibrio alginolyticus by the rotational direction control of the polar flagellar motor. Genes Cells 2021; 26:927-937. [PMID: 34487583 DOI: 10.1111/gtc.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Bacteria exhibit chemotaxis by controlling flagellar rotation to move toward preferred places or away from nonpreferred places. The change in rotation is triggered by the binding of the chemotaxis signaling protein CheY-phosphate (CheY-P) to the C-ring in the flagellar motor. Some specific bacteria, including Vibrio spp. and Shewanella spp., have a single transmembrane protein called ZomB. ZomB is essential for controlling the flagellar rotational direction in Shewanella putrefaciens and Vibrio parahaemolyticus. In this study, we confirmed that the zomB deletion results only in the counterclockwise (CCW) rotation of the motor in Vibrio alginolyticus as previously reported in other bacteria. We found that ZomB is not required for a clockwise-locked phenotype caused by mutations in fliG and fliM, and that ZomB is essential for CW rotation induced by overproduction of CheY-P. Purified ZomB proteins form multimers, suggesting that ZomB may function as a homo-oligomer. These observations imply that ZomB interacts with protein(s) involved in either flagellar motor rotation, chemotaxis, or both. We provide the evidence that ZomB is a new player in chemotaxis and is required for the rotational control in addition to CheY in Vibrio alginolyticus.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tatsuro Nishikino
- Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, Suita, Japan
| | - Kiyoshiro Hori
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
25
|
Mäkelä J, Uphoff S, Sherratt DJ. Nonrandom segregation of sister chromosomes by Escherichia coli MukBEF. Proc Natl Acad Sci U S A 2021; 118:e2022078118. [PMID: 34385314 PMCID: PMC8379921 DOI: 10.1073/pnas.2022078118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (ter) binding protein, MatP, to chromosome organization-segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound β2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older ("immortal") template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
26
|
Arroyo-Pérez EE, Ringgaard S. Interdependent Polar Localization of FlhF and FlhG and Their Importance for Flagellum Formation of Vibrio parahaemolyticus. Front Microbiol 2021; 12:655239. [PMID: 33815347 PMCID: PMC8009987 DOI: 10.3389/fmicb.2021.655239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Ringgaard
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
27
|
The Azospirillum brasilense Core Chemotaxis Proteins CheA1 and CheA4 Link Chemotaxis Signaling with Nitrogen Metabolism. mSystems 2021; 6:6/1/e01354-20. [PMID: 33594007 PMCID: PMC8561660 DOI: 10.1128/msystems.01354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense, chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN, which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.
Collapse
|
28
|
Stable inheritance of Sinorhizobium meliloti cell growth polarity requires an FtsN-like protein and an amidase. Nat Commun 2021; 12:545. [PMID: 33483499 PMCID: PMC7822825 DOI: 10.1038/s41467-020-20739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales. In Sinorhizobium bacteria, cell elongation takes place only at new cell poles, generated by cell division. Here, Krol et al. show that an FtsN-like protein and a peptidoglycan amidase are crucial for reliable selection of the new cell pole as cell elongation zone.
Collapse
|
29
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
Affiliation(s)
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
30
|
Maurya GK, Misra HS. Characterization of ori and parS-like functions in secondary genome replicons in Deinococcus radiodurans. Life Sci Alliance 2020; 4:4/1/e202000856. [PMID: 33199509 PMCID: PMC7671480 DOI: 10.26508/lsa.202000856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanisms underlying multipartite genome maintenance and its functional significance in extraordinary radioresistance of Deinococcus radiodurans are not well understood. The sequences upstream to parAB operons in chrII (cisII) and MP (cisMP) could stabilize an otherwise, non-replicative colE1 plasmid, in D. radiodurans DnaA and cognate ParB proteins bound specifically with cisII and cisMP elements. The ΔcisII and ΔcisMP cells showed the reduced copy number of cognate replicons and radioresistance as compared with wild type. Fluorescent reporter-operator system inserted in chrI, chrII, and MP in wild type and cisII mutants showed the presence of all three replicons in wild-type cells. Although chrI was present in all the ΔcisII and ΔcisMP cells, nearly half of these cells had chrII and MP, respectively, and the other half had the reduced number of foci representing these replications. These results suggested that cisII and cisMP elements contain both origin of replication and parS-like functions and the secondary genome replicons (chrII and MP) are maintained independent of chrI and have roles in radioresistance of D. radiodurans.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India .,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
31
|
Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, Rodriguez-Franco M, Curmi PMG, Duggin IG, Quax TEF, Albers SV. An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea. Curr Biol 2020; 30:4956-4972.e4. [PMID: 33125862 DOI: 10.1016/j.cub.2020.09.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Solenne Ithurbide
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Floriane Delpech
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
32
|
The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in Myxococcus xanthus. Proc Natl Acad Sci U S A 2020; 117:28366-28373. [PMID: 33093210 PMCID: PMC7668184 DOI: 10.1073/pnas.2002783117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The type IV pilus (Tfp) is a multipurpose machine found on bacterial surfaces that works by cycles of synthesis/retraction of a pilin fiber. During surface (twitching) motility, the coordinated actions of multiple Tfps at the cell pole promotes single cells and synchronized group movements. Here, directly observing polar Tfp machines in action during motility of Myxococcus xanthus, we identified the mechanism underlying pole-specific Tfps activation. In this process, the Ras-like protein MglA targets a novel essential Tfp-activator, SgmX, to the pole, ensuring both the unipolar activation of Tfps and its switching to the opposite pole when cells reverse their movement. Thus, a dynamic cascade of polar activators regulates multicellular movements, a feature that is likely conserved in other twitching bacteria. Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus, we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.
Collapse
|
33
|
Ortega DR, Kjær A, Briegel A. The chemosensory systems of Vibrio cholerae. Mol Microbiol 2020; 114:367-376. [PMID: 32347610 PMCID: PMC7534058 DOI: 10.1111/mmi.14520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea. Reflecting the complex life cycle of V. cholerae, this organism has three different chemosensory pathways that together contain over 50 proteins expressed under different environmental conditions. Only one of them is known to control motility, while the function of the other two remains to be discovered. Here, we provide an overview of the chemosensory systems in V. cholerae and the advances toward understanding their structure and function.
Collapse
Affiliation(s)
- Davi R. Ortega
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Andreas Kjær
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ariane Briegel
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
34
|
Anand D, Schumacher D, Søgaard-Andersen L. SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus. Mol Microbiol 2020; 114:839-856. [PMID: 32738827 DOI: 10.1111/mmi.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
35
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
36
|
Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species. J Bacteriol 2020; 202:JB.00236-20. [PMID: 32482724 PMCID: PMC8404704 DOI: 10.1128/jb.00236-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Erika Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamic Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
37
|
Lemos Rocha LF, Blokesch M. A Vibriophage Takes Antirepression to the Next Level. Cell Host Microbe 2020; 27:493-495. [PMID: 32272072 DOI: 10.1016/j.chom.2020.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Since its isolation by Esther Lederberg, phage lambda and its repressor protein CI have contributed substantially to the advancement of molecular biology. In this issue of Cell Host & Microbe, Silpe et al. (2020) characterize the antirepressor Qtip of Vibrio phage VP882, which through CI sequestration triggers a lytic switch.
Collapse
Affiliation(s)
- Leonardo F Lemos Rocha
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
38
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
39
|
Regulation of the Single Polar Flagellar Biogenesis. Biomolecules 2020; 10:biom10040533. [PMID: 32244780 PMCID: PMC7226244 DOI: 10.3390/biom10040533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Some bacterial species, such as the marine bacterium Vibrio alginolyticus, have a single polar flagellum that allows it to swim in liquid environments. Two regulators, FlhF and FlhG, function antagonistically to generate only one flagellum at the cell pole. FlhF, a signal recognition particle (SRP)-type guanosine triphosphate (GTP)ase, works as a positive regulator for flagellar biogenesis and determines the location of flagellar assembly at the pole, whereas FlhG, a MinD-type ATPase, works as a negative regulator that inhibits flagellar formation. FlhF intrinsically localizes at the cell pole, and guanosine triphosphate (GTP) binding to FlhF is critical for its polar localization and flagellation. FlhG also localizes at the cell pole via the polar landmark protein HubP to directly inhibit FlhF function at the cell pole, and this localization depends on ATP binding to FlhG. However, the detailed regulatory mechanisms involved, played by FlhF and FlhG as the major factors, remain largely unknown. This article reviews recent studies that highlight the post-translational regulation mechanism that allows the synthesis of only a single flagellum at the cell pole.
Collapse
|
40
|
Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genet 2020; 16:e1008703. [PMID: 32176702 PMCID: PMC7098655 DOI: 10.1371/journal.pgen.1008703] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/26/2020] [Accepted: 03/01/2020] [Indexed: 11/25/2022] Open
Abstract
The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state. A key regulator of Vibrio cholerae physiology is the nucleotide-based, second messenger cyclic dimeric guanosine monophosphate (c-di-GMP). We found that the status of flagellar biosynthesis at different stages of flagellar assembly modulates c-di-GMP signaling in V. cholerae and identified diguanylate cyclases involved in this regulatory process. The effect of motility status on the cellular c-di-GMP level is partly dependent on the flagellar stator and Na+ flux through the flagellum. Finally, we showed that c-di-GMP-dependent positive regulators of biofilm formation are critical for the signaling cascade that connects motility status to biofilm formation. Our results show that in addition to c-di-GMP promoting motile to biofilm lifestyle switch, “motility status” of V. cholerae modulates c-di-GMP signaling and biofilm formation.
Collapse
|
41
|
Nicastro GG, Kaihami GH, Pulschen AA, Hernandez-Montelongo J, Boechat AL, de Oliveira Pereira T, Rosa CGT, Stefanello E, Colepicolo P, Bordi C, Baldini RL. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein. Sci Rep 2020; 10:3077. [PMID: 32080219 PMCID: PMC7033161 DOI: 10.1038/s41598-020-59536-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 01/19/2023] Open
Abstract
c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Jacobo Hernandez-Montelongo
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Ana Laura Boechat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Caio Gomes Tavares Rosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Eliezer Stefanello
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
42
|
Chan H, Söderström B, Skoglund U. Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus. Microbiologyopen 2020; 9:e999. [PMID: 31990138 PMCID: PMC7142367 DOI: 10.1002/mbo3.999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial chromosome segregation is an essential cellular process that is particularly elusive in spherical bacteria such as the opportunistic human pathogen Staphylococcus aureus. In this study, we examined the functional significance of a ParB homologue, Spo0J, in staphylococcal chromosome segregation and investigated the role of the structural maintenance of chromosomes (SMC) bacterial condensin in this process. We show that neither spo0J nor smc is essential in S. aureus; however, their absence causes abnormal chromosome segregation. We demonstrate that formation of complexes containing Spo0J and SMC is required for efficient S. aureus chromosome segregation and that SMC localization is dependent on Spo0J. Furthermore, we found that cell division and cell cycle progression are unaffected by the absence of spo0J or smc. Our results verify the role of Spo0J and SMC in ensuring accurate staphylococcal chromosome segregation and also imply functional redundancy or the involvement of additional mechanisms that might contribute to faithful chromosome inheritance.
Collapse
Affiliation(s)
- Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
43
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
44
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
45
|
Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio 2020; 11:e02286-19. [PMID: 31911488 PMCID: PMC6946799 DOI: 10.1128/mbio.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.
Collapse
Affiliation(s)
- Louie D Henderson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
46
|
Physical Views on ParABS-Mediated DNA Segregation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:45-58. [PMID: 32894476 DOI: 10.1007/978-3-030-46886-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this chapter, we will focus on ParABS: an apparently simple, three-component system, required for the segregation of bacterial chromosomes and plasmids. We will specifically describe how biophysical measurements combined with physical modeling advanced our understanding of the mechanism of ParABS-mediated complex assembly, segregation and positioning.
Collapse
|
47
|
Schniederberend M, Williams JF, Shine E, Shen C, Jain R, Emonet T, Kazmierczak BI. Modulation of flagellar rotation in surface-attached bacteria: A pathway for rapid surface-sensing after flagellar attachment. PLoS Pathog 2019; 15:e1008149. [PMID: 31682637 PMCID: PMC6855561 DOI: 10.1371/journal.ppat.1008149] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/14/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Attachment is a necessary first step in bacterial commitment to surface-associated behaviors that include colonization, biofilm formation, and host-directed virulence. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa can initially attach to surfaces via its single polar flagellum. Although many bacteria quickly detach, some become irreversibly attached and express surface-associated structures, such as Type IV pili, and behaviors, including twitching motility and biofilm initiation. P. aeruginosa that lack the GTPase FlhF assemble a randomly placed flagellum that is motile; however, we observed that these mutant bacteria show defects in biofilm formation comparable to those seen for non-motile, aflagellate bacteria. This phenotype was associated with altered behavior of ΔflhF bacteria immediately following surface-attachment. Forward and reverse genetic screens led to the discovery that FlhF interacts with FimV to control flagellar rotation at a surface, and implicated cAMP signaling in this pathway. Although cAMP controls many transcriptional programs in P. aeruginosa, known targets of this second messenger were not required to modulate flagellar rotation in surface-attached bacteria. Instead, alterations in switching behavior of the motor appeared to result from direct or indirect effects of cAMP on switch complex proteins and/or the stators associated with them.
Collapse
Affiliation(s)
- Maren Schniederberend
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Jessica F. Williams
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Emilee Shine
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
| | - Cong Shen
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
| | - Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Barbara I. Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
48
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
49
|
Floc'h K, Lacroix F, Servant P, Wong YS, Kleman JP, Bourgeois D, Timmins J. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nat Commun 2019; 10:3815. [PMID: 31444361 PMCID: PMC6707255 DOI: 10.1038/s41467-019-11725-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.
Collapse
Affiliation(s)
- Kevin Floc'h
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
| |
Collapse
|
50
|
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun 2019; 10:3290. [PMID: 31337764 PMCID: PMC6650430 DOI: 10.1038/s41467-019-11242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation typically occurs after replication has finished in eukaryotes but during replication in bacteria. Here, we show that the alphaproteobacterium Hyphomonas neptunium, which proliferates by bud formation at the tip of a stalk-like cellular extension, segregates its chromosomes in a unique two-step process. First, the two sister origin regions are targeted to opposite poles of the mother cell, driven by the ParABS partitioning system. Subsequently, once the bulk of chromosomal DNA has been replicated and the bud exceeds a certain threshold size, the cell initiates a second segregation step during which it transfers the stalk-proximal origin region through the stalk into the nascent bud compartment. Thus, while chromosome replication and segregation usually proceed concurrently in bacteria, the two processes are largely uncoupled in H. neptunium, reminiscent of eukaryotic mitosis. These results indicate that stalked budding bacteria have evolved specific mechanisms to adjust chromosome segregation to their unusual life cycle.
Collapse
|