1
|
Sahoo PK, Sheenu, Jain D. REC domain stabilizes the active heptamer of σ 54-dependent transcription factor, FleR from Pseudomonas aeruginosa. iScience 2023; 26:108397. [PMID: 38058307 PMCID: PMC10696123 DOI: 10.1016/j.isci.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Motility in Pseudomonas aeruginosa is mediated through a single, polar flagellum, which is essential for virulence, colonization, and biofilm formation. FleSR, a two-component system (TCS), serves as a critical checkpoint in flagellar assembly. FleR is a σ54-dependent response regulator that undergoes phosphorylation via cognate sensor kinase FleS for the assembly of the functionally active form. The active form remodels the σ54-RNAP complex to initiate transcription. Small-angle X-ray scattering, crystallography, and negative staining electron microscopy reconstructions of FleR revealed that it exists predominantly as a dimer in the inactive form with low ATPase activity and assembles into heptamers upon phosphorylation with amplified ATPase activity. We establish that receiver (REC) domain stabilizes the heptamers and is indispensable for assembly of the functional phosphorylated form of FleR. The structural, biochemical, and in vivo complementation assays provide details of the phosphorylation-mediated assembly of FleR to regulate the expression of flagellar genes.
Collapse
Affiliation(s)
- Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
2
|
Mueller AU, Chen J, Wu M, Chiu C, Nixon BT, Campbell EA, Darst SA. A general mechanism for transcription bubble nucleation in bacteria. Proc Natl Acad Sci U S A 2023; 120:e2220874120. [PMID: 36972428 PMCID: PMC10083551 DOI: 10.1073/pnas.2220874120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Bacterial transcription initiation requires σ factors for nucleation of the transcription bubble. The canonical housekeeping σ factor, σ70, nucleates DNA melting via recognition of conserved bases of the promoter -10 motif, which are unstacked and captured in pockets of σ70. By contrast, the mechanism of transcription bubble nucleation and formation during the unrelated σN-mediated transcription initiation is poorly understood. Herein, we combine structural and biochemical approaches to establish that σN, like σ70, captures a flipped, unstacked base in a pocket formed between its N-terminal region I (RI) and extra-long helix features. Strikingly, RI inserts into the nascent bubble to stabilize the nucleated bubble prior to engagement of the obligate ATPase activator. Our data suggest a general paradigm of transcription initiation that requires σ factors to nucleate an early melted intermediate prior to productive RNA synthesis.
Collapse
Affiliation(s)
- Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Mengyu Wu
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Courtney Chiu
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA16802
| | | | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| |
Collapse
|
3
|
Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation. Int J Mol Sci 2023; 24:ijms24020907. [PMID: 36674420 PMCID: PMC9866876 DOI: 10.3390/ijms24020907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Nitrogen-fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the "nitrogen problem". Azotobacter vinelandii is a well-established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA-NifL system fine-tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen-fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen-fixing regulation.
Collapse
|
4
|
Ye F, Gao F, Liu X, Buck M, Zhang X. Mechanisms of DNA opening revealed in AAA+ transcription complex structures. SCIENCE ADVANCES 2022; 8:eadd3479. [PMID: 36542713 PMCID: PMC9770992 DOI: 10.1126/sciadv.add3479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Gene transcription is carried out by RNA polymerase (RNAP) and requires the conversion of the initial closed promoter complex, where DNA is double stranded, to a transcription-competent open promoter complex, where DNA is opened up. In bacteria, RNAP relies on σ factors for its promoter specificities. Using a special form of sigma factor (σ54), which forms a stable closed complex and requires its activator that belongs to the AAA+ ATPases (ATPases associated with diverse cellular activities), we obtained cryo-electron microscopy structures of transcription initiation complexes that reveal a previously unidentified process of DNA melting opening. The σ54 amino terminus threads through the locally opened up DNA and then becomes enclosed by the AAA+ hexameric ring in the activator-bound intermediate complex. Our structures suggest how ATP hydrolysis by the AAA+ activator could remove the σ54 inhibition while helping to open up DNA, using σ54 amino-terminal peptide as a pry bar.
Collapse
Affiliation(s)
- Fuzhou Ye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, South Kensington SW7 2AZ, UK
| | - Forson Gao
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, South Kensington SW7 2AZ, UK
| | - Xiaojiao Liu
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, South Kensington SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, South Kensington SW7 2AZ, UK
| |
Collapse
|
5
|
Neuwald AF, Yang H, Tracy Nixon B. SPARC: Structural properties associated with residue constraints. Comput Struct Biotechnol J 2022; 20:1702-1715. [PMID: 35495120 PMCID: PMC9020082 DOI: 10.1016/j.csbj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
SPARC facilitates the generation of plausible hypotheses regarding underlying biochemical mechanisms by structurally characterizing protein sequence constraints. Such constraints appear as residues co-conserved in functionally related subgroups, as subtle pairwise correlations (i.e., direct couplings), and as correlations among these sequence features or with structural features. SPARC performs three types of analyses. First, based on pairwise sequence correlations, it estimates the biological relevance of alternative conformations and of homomeric contacts, as illustrated here for death domains. Second, it estimates the statistical significance of the correspondence between directly coupled residue pairs and interactions at heterodimeric interfaces. Third, given molecular dynamics simulated structures, it characterizes interactions among constrained residues or between such residues and ligands that: (a) are stably maintained during the simulation; (b) undergo correlated formation and/or disruption of interactions with other constrained residues; or (c) switch between alternative interactions. We illustrate this for two homohexameric complexes: the bacterial enhancer binding protein (bEBP) NtrC1, which activates transcription by remodeling RNA polymerase (RNAP) containing σ54, and for DnaB helicase, which opens DNA at the bacterial replication fork. Based on the NtrC1 analysis, we hypothesize possible mechanisms for inhibiting ATP hydrolysis until ADP is released from an adjacent subunit and for coupling ATP hydrolysis to restructuring of σ54 binding loops. Based on the DnaB analysis, we hypothesize that DnaB 'grabs' ssDNA by flipping every fourth base and inserting it into cavities between subunits and that flipping of a DnaB-specific glutamine residue triggers ATP hydrolysis.
Collapse
Affiliation(s)
- Andrew F. Neuwald
- Institute for Genome Sciences and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Steet, Baltimore, MD 21201, USA,Corresponding author.
| | - Hui Yang
- Department of Biology. Penn State University, 304A Frear South Building, University Park, PA 16802
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, 335 Frear South Building, University Park, PA 16802, USA
| |
Collapse
|
6
|
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66:119-128. [PMID: 33246198 PMCID: PMC7973254 DOI: 10.1016/j.sbi.2020.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
AAA+ ATPases are a diverse protein superfamily which power a vast number of cellular processes, from protein degradation to genome replication and ribosome biogenesis. The latest advances in cryo-EM have resulted in a spectacular increase in the number and quality of AAA+ ATPase structures. This abundance of new information enables closer examination of different types of structural insertions into the conserved core, revealing discrepancies in the current classification of AAA+ modules into clades. Additionally, combined with biochemical data, it has allowed rapid progress in our understanding of structure-functional relationships and provided arguments both in favour and against the existence of a unifying molecular mechanism for the ATPase activity and action on substrates, stimulating further intensive research.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| |
Collapse
|
7
|
Chakraborty S, Biswas M, Dey S, Agarwal S, Chakrabortty T, Ghosh B, Dasgupta J. The heptameric structure of the flagellar regulatory protein FlrC is indispensable for ATPase activity and disassembled by cyclic-di-GMP. J Biol Chem 2020; 295:16960-16974. [PMID: 32998953 PMCID: PMC7863884 DOI: 10.1074/jbc.ra120.014083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/26/2020] [Indexed: 11/06/2022] Open
Abstract
The bacterial enhancer-binding protein (bEBP) FlrC, controls motility and colonization of Vibrio cholerae by regulating the transcription of class-III flagellar genes in σ54-dependent manner. However, the mechanism by which FlrC regulates transcription is not fully elucidated. Although, most bEBPs require nucleotides to stimulate the oligomerization necessary for function, our previous study showed that the central domain of FlrC (FlrCC) forms heptamer in a nucleotide-independent manner. Furthermore, heptameric FlrCC binds ATP in "cis-mediated" style without any contribution from sensor I motif 285REDXXYR291 of the trans protomer. This atypical ATP binding raises the question of whether heptamerization of FlrC is solely required for transcription regulation, or if it is also critical for ATPase activity. ATPase assays and size exclusion chromatography of the trans-variants FlrCC-Y290A and FlrCC-R291A showed destabilization of heptameric assembly with concomitant abrogation of ATPase activity. Crystal structures showed that in the cis-variant FlrCC-R349A drastic shift of Walker A encroached ATP-binding site, whereas the site remained occupied by ADP in FlrCC-Y290A. We postulated that FlrCC heptamerizes through concentration-dependent cooperativity for maximal ATPase activity and upon heptamerization, packing of trans-acting Tyr290 against cis-acting Arg349 compels Arg349 to maintain proper conformation of Walker A. Finally, a Trp quenching study revealed binding of cyclic-di-GMP with FlrCC Excess cyclic-di-GMP repressed ATPase activity of FlrCC through destabilization of heptameric assembly, especially at low concentration of protein. Systematic phylogenetic analysis allowed us to propose similar regulatory mechanisms for FlrCs of several Vibrio species and a set of monotrichous Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Maitree Biswas
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | | | | | - Biplab Ghosh
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College, Kolkata, India.
| |
Collapse
|
8
|
Bacterial Enhancer Binding Proteins-AAA + Proteins in Transcription Activation. Biomolecules 2020; 10:biom10030351. [PMID: 32106553 PMCID: PMC7175178 DOI: 10.3390/biom10030351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/24/2023] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.
Collapse
|
9
|
Karade SS, Ansari A, Srivastava VK, Nayak AR, Pratap JV. Molecular and structural analysis of a mechanical transition of helices in the L. donovani coronin coiled-coil domain. Int J Biol Macromol 2020; 143:785-796. [PMID: 31778699 DOI: 10.1016/j.ijbiomac.2019.09.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions of cellular importance are mediated by coiled coils (CCs), the ubiquitous structural motif formed by the association of two or more α-helices in a knobs into holes manner. Coronins, actin-associated multi-functional proteins that possess distinct cytoskeleton-dependent and independent functions, oligomerize through their C-terminal CC domain. The structure of the L. donovani coronin CC domain (LdCoroCC; PDB ID 5CX2) revealed, in addition to a novel topology and architecture, an inherent asymmetry, with one of the helices of the 4-helix bundle axially shifted (~2 turns). The structural analysis identified that steric hindrance by Ile 486, Leu 493 and Met 500 as the cause for this asymmetry. To experimentally validate this hypothesis and to better understand the sequence-structure relationship in CCs, these amino acids have been mutated (I486A, L493A, M500V and the double mutant I486A-L493A) and characterized. Thermal CD studies suggest that the I486A and M500V mutants have comparable Tm values to LdCoroCC, while the other mutants have lower melting temperatures. The mutant crystal structures (I486A, M500V and the double mutant) retain the 'ade' core packing as LdcoroCC. While the M500V structure is similar to LdCoroCC, the I486A and the I486A-L493A structures show an asymmetry to symmetry transition. This study reveals crucial role of residues at position 'a' in coiled-coil domain play an important role in stabilizing the asymmetry in LdCoroCC, which might be necessary pursue specific biological function(s) inside the Leishmania.
Collapse
Affiliation(s)
- Sharanbasappa Shrimant Karade
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ahmadullah Ansari
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vijay Kumar Srivastava
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ashok Ranjan Nayak
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
10
|
Danson AE, Jovanovic M, Buck M, Zhang X. Mechanisms of σ 54-Dependent Transcription Initiation and Regulation. J Mol Biol 2019; 431:3960-3974. [PMID: 31029702 PMCID: PMC7057263 DOI: 10.1016/j.jmb.2019.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/02/2023]
Abstract
Cellular RNA polymerase is a multi-subunit macromolecular assembly responsible for gene transcription, a highly regulated process conserved from bacteria to humans. In bacteria, sigma factors are employed to mediate gene-specific expression in response to a variety of environmental conditions. The major variant σ factor, σ54, has a specific role in stress responses. Unlike σ70-dependent transcription, which often can spontaneously proceed to initiation, σ54-dependent transcription requires an additional ATPase protein for activation. As a result, structures of a number of distinct functional states during the dynamic process of transcription initiation have been captured using the σ54 system with both x-ray crystallography and cryo electron microscopy, furthering our understanding of σ54-dependent transcription initiation and DNA opening. Comparisons with σ70 and eukaryotic polymerases reveal unique and common features during transcription initiation.
Collapse
Affiliation(s)
- Amy E Danson
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Milija Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Nirwan N, Singh P, Mishra GG, Johnson CM, Szczelkun MD, Inoue K, Vinothkumar KR, Saikrishnan K. Hexameric assembly of the AAA+ protein McrB is necessary for GTPase activity. Nucleic Acids Res 2019; 47:868-882. [PMID: 30521042 PMCID: PMC6344862 DOI: 10.1093/nar/gky1170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
McrBC is one of the three modification-dependent restriction enzymes encoded by the Escherichia coli K12 chromosome. Amongst restriction enzymes, McrBC and its close homologues are unique in employing the AAA+ domain for GTP hydrolysis-dependent activation of DNA cleavage. The GTPase activity of McrB is stimulated by the endonuclease subunit McrC. It had been reported previously that McrB and McrC subunits oligomerise together into a high molecular weight species. Here we conclusively demonstrate using size exclusion chromatography coupled multi-angle light scattering (SEC-MALS) and images obtained by electron cryomicroscopy that McrB exists as a hexamer in solution. Furthermore, based on SEC-MALS and SAXS analyses of McrBC and the structure of McrB, we propose that McrBC is a complex of two McrB hexamers bridged by two subunits of McrC, and that the complete assembly of this complex is integral to its enzymatic activity. We show that the nucleotide-dependent oligomerisation of McrB precedes GTP hydrolysis. Mutational studies show that, unlike other AAA+ proteins, the catalytic Walker B aspartate is required for oligomerisation.
Collapse
Affiliation(s)
- Neha Nirwan
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Pratima Singh
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Gyana Gourab Mishra
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | | | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
| | | | - Kayarat Saikrishnan
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
12
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
13
|
Ahdash Z, Lau AM, Byrne RT, Lammens K, Stüetzer A, Urlaub H, Booth PJ, Reading E, Hopfner KP, Politis A. Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex. Nucleic Acids Res 2017; 45:12025-12038. [PMID: 29149348 PMCID: PMC5715905 DOI: 10.1093/nar/gkx890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/08/2023] Open
Abstract
The HerA-NurA helicase-nuclease complex cooperates with Mre11 and Rad50 to coordinate the repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA. By combining hybrid mass spectrometry with cryo-EM, computational and biochemical data, we investigate the oligomeric formation of HerA and detail the mechanism of nucleotide binding to the HerA-NurA complex from thermophilic archaea. We reveal that ATP-free HerA and HerA-DNA complexes predominantly exist in solution as a heptamer and act as a DNA loading intermediate. The binding of either NurA or ATP stabilizes the hexameric HerA, indicating that HerA-NurA is activated by substrates and complex assembly. To examine the role of ATP in DNA translocation and processing, we investigated how nucleotides interact with the HerA-NurA. We show that while the hexameric HerA binds six nucleotides in an 'all-or-none' fashion, HerA-NurA harbors a highly coordinated pairwise binding mechanism and enables the translocation and processing of double-stranded DNA. Using molecular dynamics simulations, we reveal novel inter-residue interactions between the external ATP and the internal DNA binding sites. Overall, here we propose a stepwise assembly mechanism detailing the synergistic activation of HerA-NurA by ATP, which allows efficient processing of double-stranded DNA.
Collapse
Affiliation(s)
- Zainab Ahdash
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Andy M. Lau
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Robert Thomas Byrne
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Alexandra Stüetzer
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, MPI for Biophysical Chemistry, D-37077 Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Paula J. Booth
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Eamonn Reading
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 München, Germany
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
14
|
Cryo-EM structures of the ATP-bound Vps4 E233Q hexamer and its complex with Vta1 at near-atomic resolution. Nat Commun 2017; 8:16064. [PMID: 28714467 PMCID: PMC5520056 DOI: 10.1038/ncomms16064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 05/25/2017] [Indexed: 11/08/2022] Open
Abstract
The cellular ESCRT-III (endosomal sorting complex required for transport-III) and Vps4 (vacuolar protein sorting 4) comprise a common machinery that mediates a variety of membrane remodelling events. Vps4 is essential for the machinery function by using the energy from ATP hydrolysis to disassemble the ESCRT-III polymer into individual proteins. Here, we report the structures of the ATP-bound Vps4E233Q hexamer and its complex with the cofactor Vta1 (vps twenty associated 1) at resolutions of 3.9 and 4.2 Å, respectively, determined by electron cryo-microscopy. Six Vps4E233Q subunits in both assemblies exhibit a spiral-shaped ring-like arrangement. Locating at the periphery of the hexameric ring, Vta1 dimer bridges two adjacent Vps4 subunits by two different interaction modes to promote the formation of the active Vps4 hexamer during ESCRT-III filament disassembly. The structural findings, together with the structure-guided biochemical and single-molecule analyses, provide important insights into the process of the ESCRT-III polymer disassembly by Vps4. The ESCRT-III and Vps4 complexes mediate a variety of membrane remodelling events. Here the authors describe the structure of the Vps4 hexamer complexed to its cofactor Vta1, and show that Vta1 bridges adjacent Vps4 subunits to promote formation of the active hexamer during ESCRT-III filament disassembly.
Collapse
|
15
|
Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation. Mol Cell 2017; 67:106-116.e4. [PMID: 28579332 PMCID: PMC5505868 DOI: 10.1016/j.molcel.2017.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. RNA polymerase closed complex (RPc) structure reveals DNA distortions by σ Intermediate complex (RPi) structure reveals the roles of AAA activator DNA distortion and opening are initiated in RPc and RPi before entering the RNAP RNAP conformation in RPi is significantly different from closed or open complex
Collapse
|
16
|
Sysoeva TA. Assessing heterogeneity in oligomeric AAA+ machines. Cell Mol Life Sci 2017; 74:1001-1018. [PMID: 27669691 PMCID: PMC11107579 DOI: 10.1007/s00018-016-2374-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.
Collapse
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
17
|
Ibrahim Z, Martel A, Moulin M, Kim HS, Härtlein M, Franzetti B, Gabel F. Time-resolved neutron scattering provides new insight into protein substrate processing by a AAA+ unfoldase. Sci Rep 2017; 7:40948. [PMID: 28102317 PMCID: PMC5244417 DOI: 10.1038/srep40948] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/12/2016] [Indexed: 01/24/2023] Open
Abstract
We present a combination of small-angle neutron scattering, deuterium labelling and contrast variation, temperature activation and fluorescence spectroscopy as a novel approach to obtain time-resolved, structural data individually from macromolecular complexes and their substrates during active biochemical reactions. The approach allowed us to monitor the mechanical unfolding of a green fluorescent protein model substrate by the archaeal AAA+ PAN unfoldase on the sub-minute time scale. Concomitant with the unfolding of its substrate, the PAN complex underwent an energy-dependent transition from a relaxed to a contracted conformation, followed by a slower expansion to its initial state at the end of the reaction. The results support a model in which AAA ATPases unfold their substrates in a reversible power stroke mechanism involving several subunits and demonstrate the general utility of this time-resolved approach for studying the structural molecular kinetics of multiple protein remodelling complexes and their substrates on the sub-minute time scale.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Université Grenoble Alpes, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38044 Grenoble, France.,Institut Laue-Langevin, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Henry S Kim
- Université Grenoble Alpes, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38044 Grenoble, France
| | | | - Bruno Franzetti
- Université Grenoble Alpes, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Frank Gabel
- Université Grenoble Alpes, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38044 Grenoble, France.,Centre à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38044 Grenoble, France.,Institut Laue-Langevin, 38042 Grenoble, France
| |
Collapse
|
18
|
Siegel AR, Wemmer DE. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation. J Mol Biol 2016; 428:4669-4685. [PMID: 27732872 DOI: 10.1016/j.jmb.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA+ ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. We identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1-σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.
Collapse
Affiliation(s)
- Alexander R Siegel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - David E Wemmer
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Boyaci H, Shah T, Hurley A, Kokona B, Li Z, Ventocilla C, Jeffrey PD, Semmelhack MF, Fairman R, Bassler BL, Hughson FM. Structure, Regulation, and Inhibition of the Quorum-Sensing Signal Integrator LuxO. PLoS Biol 2016; 14:e1002464. [PMID: 27219477 PMCID: PMC4878744 DOI: 10.1371/journal.pbio.1002464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
In a process called quorum sensing, bacteria communicate with chemical signal molecules called autoinducers to control collective behaviors. In pathogenic vibrios, including Vibrio cholerae, the accumulation of autoinducers triggers repression of genes responsible for virulence factor production and biofilm formation. The vibrio autoinducer molecules bind to transmembrane receptors of the two-component histidine sensor kinase family. Autoinducer binding inactivates the receptors' kinase activities, leading to dephosphorylation and inhibition of the downstream response regulator LuxO. Here, we report the X-ray structure of LuxO in its unphosphorylated, autoinhibited state. Our structure reveals that LuxO, a bacterial enhancer-binding protein of the AAA+ ATPase superfamily, is inhibited by an unprecedented mechanism in which a linker that connects the catalytic and regulatory receiver domains occupies the ATPase active site. The conformational change that accompanies receiver domain phosphorylation likely disrupts this interaction, providing a mechanistic rationale for LuxO activation. We also determined the crystal structure of the LuxO catalytic domain bound to a broad-spectrum inhibitor. The inhibitor binds in the ATPase active site and recapitulates elements of the natural regulatory mechanism. Remarkably, a single inhibitor molecule may be capable of inhibiting an entire LuxO oligomer.
Collapse
Affiliation(s)
- Hande Boyaci
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Tayyab Shah
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Amanda Hurley
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Zhijie Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Christian Ventocilla
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Martin F. Semmelhack
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tang WK, Xia D. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain. Sci Rep 2016; 6:20037. [PMID: 26818443 PMCID: PMC4730245 DOI: 10.1038/srep20037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Human AAA(+) protein p97 consists of an N-domain and two tandem ATPase domains D1 and D2, which are connected by the N-D1 and the D1-D2 linkers. Inclusion of the D1-D2 linker, a 22-amino acid peptide, at the end of p97 N-D1 truncate has been shown to activate ATP hydrolysis of its D1-domain, although the mechanism of activation remains unclear. Here, we identify the N-terminal half of this linker, highly conserved from human to fungi, is essential for the ATPase activation. By analyzing available crystal structures, we observed that the D1-D2 linker is capable of inducing asymmetry in subunit association into a p97 hexamer. This observation is reinforced by two new crystal structures, determined in the present work. The effect of D1-D2 linker on the ATPase activity of the D1-domain is correlated to the side-chain conformation of residue R359, a trans-acting arginine-finger residue essential for ATP hydrolysis of the D1-domain. The activation in D1-domain ATPase activity by breaking perfect six-fold symmetry implies functional importance of asymmetric association of p97 subunits, the extent of which can be determined quantitatively by the metric Asymmetric Index.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Zhang N, Jovanovic G, McDonald C, Ces O, Zhang X, Buck M. Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:207-30. [DOI: 10.1007/978-3-319-32189-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2015; 113:E209-18. [PMID: 26712005 DOI: 10.1073/pnas.1523148113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.
Collapse
|
23
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
24
|
Monroe N, Hill CP. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. J Mol Biol 2015; 428:1897-911. [PMID: 26555750 DOI: 10.1016/j.jmb.2015.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated.
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
25
|
Recent Advances in Deciphering the Structure and Molecular Mechanism of the AAA+ ATPase N-Ethylmaleimide-Sensitive Factor (NSF). J Mol Biol 2015; 428:1912-26. [PMID: 26546278 DOI: 10.1016/j.jmb.2015.10.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
N-ethylmaleimide-sensitive factor (NSF), first discovered in 1988, is a key factor for eukaryotic trafficking, including protein and hormone secretion and neurotransmitter release. It is a member of the AAA+ family (ATPases associated with diverse cellular activities). NSF disassembles soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes in conjunction with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP). Structural studies of NSF and its complex with SNAREs and SNAPs (known as 20S supercomplex) started about 20years ago. Crystal structures of individual N and D2 domains of NSF and low-resolution electron microscopy structures of full-length NSF and 20S supercomplex have been reported over the years. Nevertheless, the molecular architecture of the 20S supercomplex and the molecular mechanism of NSF-mediated SNARE complex disassembly remained unclear until recently. Here we review recent atomic-resolution or near-atomic resolution structures of NSF and of the 20S supercomplex, as well as recent insights into the molecular mechanism and energy requirements of NSF. We also compare NSF with other known AAA+ family members.
Collapse
|
26
|
Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. PspF-binding domain PspA1-144and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59. [DOI: 10.1111/mmi.13154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Osadnik
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Michael Schöpfel
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Eyleen Heidrich
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Denise Mehner
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Christoph Parthier
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Milton T. Stubbs
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Thomas Brüser
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| |
Collapse
|
27
|
A perspective on the enhancer dependent bacterial RNA polymerase. Biomolecules 2015; 5:1012-9. [PMID: 26010401 PMCID: PMC4496707 DOI: 10.3390/biom5021012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Here we review recent findings and offer a perspective on how the major variant RNA polymerase of bacteria, which contains the sigma54 factor, functions for regulated gene expression. We consider what gaps exist in our understanding of its genetic, biochemical and biophysical functioning and how they might be addressed.
Collapse
|
28
|
Han H, Monroe N, Votteler J, Shakya B, Sundquist WI, Hill CP. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). J Biol Chem 2015; 290:13490-9. [PMID: 25833946 DOI: 10.1074/jbc.m115.642355] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.
Collapse
Affiliation(s)
- Han Han
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Nicole Monroe
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Jörg Votteler
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Binita Shakya
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Wesley I Sundquist
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Christopher P Hill
- From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| |
Collapse
|
29
|
Ma W, Schulten K. Mechanism of substrate translocation by a ring-shaped ATPase motor at millisecond resolution. J Am Chem Soc 2015; 137:3031-40. [PMID: 25646698 PMCID: PMC4393844 DOI: 10.1021/ja512605w] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ring-shaped, hexameric ATPase motors fulfill key functions in cellular processes, such as genome replication, transcription, or protein degradation, by translocating a long substrate through their central pore powered by ATP hydrolysis. Despite intense research efforts, the atomic-level mechanism transmitting chemical energy from hydrolysis into mechanical force that translocates the substrate is still unclear. Here we employ all-atom molecular dynamics simulations combined with advanced path sampling techniques and milestoning analysis to characterize how mRNA substrate is translocated by an exemplary homohexameric motor, the transcription termination factor Rho. We find that the release of hydrolysis product (ADP + Pi) triggers the force-generating process of Rho through a 0.1 millisecond-long conformational transition, the time scale seen also in experiment. The calculated free energy profiles and kinetics show that Rho unidirectionally translocates the single-stranded RNA substrate via a population shift of the conformational states of Rho; upon hydrolysis product release, the most favorable conformation shifts from the pretranslocation state to the post-translocation state. Via two previously unidentified intermediate states, the RNA chain is seen to be pulled by six K326 side chains, whose motions are induced by highly coordinated relative translation and rotation of Rho's six subunits. The present study not only reveals in new detail the mechanism employed by ring-shaped ATPase motors, for example the use of loosely bound and tightly bound hydrolysis reactant and product states to coordinate motor action, but also provides an effective approach to identify allosteric sites of multimeric enzymes in general.
Collapse
|
30
|
Dey S, Biswas M, Sen U, Dasgupta J. Unique ATPase site architecture triggers cis-mediated synchronized ATP binding in heptameric AAA+-ATPase domain of flagellar regulatory protein FlrC. J Biol Chem 2015; 290:8734-47. [PMID: 25688103 DOI: 10.1074/jbc.m114.611434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) oligomerize through AAA(+) domains and use ATP hydrolysis-driven energy to isomerize the RNA polymerase-σ(54) complex during transcriptional initiation. Here, we describe the first structure of the central AAA(+) domain of the flagellar regulatory protein FlrC (FlrC(C)), a bEBP that controls flagellar synthesis in Vibrio cholerae. Our results showed that FlrC(C) forms heptamer both in nucleotide (Nt)-free and -bound states without ATP-dependent subunit remodeling. Unlike the bEBPs such as NtrC1 or PspF, a novel cis-mediated "all or none" ATP binding occurs in the heptameric FlrC(C), because constriction at the ATPase site, caused by loop L3 and helix α7, restricts the proximity of the trans-protomer required for Nt binding. A unique "closed to open" movement of Walker A, assisted by trans-acting "Glu switch" Glu-286, facilitates ATP binding and hydrolysis. Fluorescence quenching and ATPase assays on FlrC(C) and mutants revealed that although Arg-349 of sensor II, positioned by trans-acting Glu-286 and Tyr-290, acts as a key residue to bind and hydrolyze ATP, Arg-319 of α7 anchors ribose and controls the rate of ATP hydrolysis by retarding the expulsion of ADP. Heptameric state of FlrC(C) is restored in solution even with the transition state mimicking ADP·AlF3. Structural results and pulldown assays indicated that L3 renders an in-built geometry to L1 and L2 causing σ(54)-FlrC(C) interaction independent of Nt binding. Collectively, our results underscore a novel mechanism of ATP binding and σ(54) interaction that strives to understand the transcriptional mechanism of the bEBPs, which probably interact directly with the RNA polymerase-σ(54) complex without DNA looping.
Collapse
Affiliation(s)
- Sanjay Dey
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| | - Maitree Biswas
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| | - Udayaditya Sen
- the Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Jhimli Dasgupta
- From the Department of Biotechnology, St. Xavier's College, 30 Park Street, Kolkata 700016 and
| |
Collapse
|
31
|
Buck M, Engl C, Joly N, Jovanovic G, Jovanovic M, Lawton E, McDonald C, Schumacher J, Waite C, Zhang N. In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription. Methods Mol Biol 2015; 1276:53-79. [PMID: 25665558 DOI: 10.1007/978-1-4939-2392-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ(54)), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ(54)-dependent gene expression.
Collapse
Affiliation(s)
- Martin Buck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM, Burton BM. Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. J Mol Biol 2014; 427:1119-32. [PMID: 24979678 DOI: 10.1016/j.jmb.2014.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Among protein secretion systems, there are specialized ATPases that serve different functions such as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX (early secretory antigen target 6 kDa secretion) protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to date have one ATPase domain and oligomerize to form a functional molecular machine, most commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, encoded either by a single gene or by two operonic genes. It is currently unknown which of the ATPase domains is catalytically functional and whether each domain plays the same or a different function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels protein translocation. We further show that individual ATPase domains play distinct roles in substrate translocation and complex formation. Comparing the single-chain and split ESX ATPases, we reveal differences in the requirements of these unique secretory ATPases.
Collapse
Affiliation(s)
- Talia L Ramsdell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Laura A Huppert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tatyana A Sysoeva
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Briana M Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Sysoeva TA, Chowdhury S, Nixon BT. Breaking symmetry in multimeric ATPase motors. Cell Cycle 2014; 13:1509-10. [PMID: 24755939 PMCID: PMC4050149 DOI: 10.4161/cc.28957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| | - Saikat Chowdhury
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| | - B Tracy Nixon
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park, PA USA
| |
Collapse
|
34
|
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 2014; 42:5177-90. [PMID: 24553251 PMCID: PMC4005640 DOI: 10.1093/nar/gku146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase.
Collapse
Affiliation(s)
- Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robert N. Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher Gell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia C. Burrows
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Dale A. Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Sivaramesh Wigneshweraraj
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - David Alastair Smith
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Buck
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- *To whom correspondence should be addressed. Tel: +44 1133 433092; Fax: +44 1133 437897;
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Correspondence may also be addressed to Roman Tuma. Tel: +44 1133 433080; Fax: +44 1133 437897;
| |
Collapse
|
35
|
Sysoeva TA, Yennawar N, Allaire M, Nixon BT. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1384-8. [PMID: 24316836 PMCID: PMC3855726 DOI: 10.1107/s174430911302976x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.
Collapse
Affiliation(s)
- Tatyana A. Sysoeva
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Marc Allaire
- NLSL, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - B. Tracy Nixon
- Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|