1
|
Cottle T, Joh L, Posner C, DeCosta A, Kardon JR. An adaptor for feedback regulation of heme biosynthesis by the mitochondrial protease CLPXP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602318. [PMID: 39005287 PMCID: PMC11245108 DOI: 10.1101/2024.07.05.602318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme biosynthesis is tightly coordinated such that essential heme functions including oxygen transport, respiration, and catalysis are fully supplied without overproducing toxic heme precursors and depleting cellular iron. The initial heme biosynthetic enzyme, ALA synthase (ALAS), exhibits heme-induced degradation that is dependent on the mitochondrial AAA+ protease complex CLPXP, but the mechanism for this negative feedback regulation had not been elucidated. By biochemical reconstitution, we have discovered that POLDIP2 serves as a heme-sensing adaptor protein to deliver ALAS for degradation. Similarly, loss of POLDIP2 strongly impairs ALAS turnover in cells. POLDIP2 directly recognizes heme-bound ALAS to drive assembly of the degradation complex. The C-terminal element of ALAS, truncation of which leads to a form of porphyria (XLDPP), is dispensable for interaction with POLDIP2 but necessary for degradation. Our findings establish the molecular basis for heme-induced degradation of ALAS by CLPXP, establish POLDIP2 as a substrate adaptor for CLPXP, and provide mechanistic insight into two forms of erythropoietic protoporphyria linked to CLPX and ALAS.
Collapse
|
2
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
3
|
Groisman EA, Choi J. Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes. Bioessays 2023; 45:e2300062. [PMID: 37533411 PMCID: PMC10530229 DOI: 10.1002/bies.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat-stable nucleoid structuring (H-NS) protein binds to AT-rich horizontally acquired genes. This ability had previously been ascribed to both anti-silencing proteins outcompeting H-NS for binding to AT-rich DNA and RNA polymerase initiating transcription from alternative promoters. However, we now know that pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli break down H-NS when this silencer is not bound to DNA. Curiously, both species use the same protease - Lon - to destroy H-NS in distinct environments. Anti-silencing proteins promote the expression of horizontally acquired genes without binding to them by displacing H-NS from AT-rich DNA, thus leaving H-NS susceptible to proteolysis and decreasing H-NS amounts overall. Conserved amino acid sequences in the Lon protease and H-NS cleavage site suggest that diverse bacteria degrade H-NS to exploit horizontally acquired genes.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT, 06516, USA
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
4
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
5
|
Yee JX, Kim J, Yeom J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol 2023; 61:331-341. [PMID: 36800168 DOI: 10.1007/s12275-023-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Collapse
Affiliation(s)
- Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Juhyun Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinki Yeom
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Rei Liao JY, Friso G, Forsythe ES, Michel EJS, Williams AM, Boguraev SS, Ponnala L, Sloan DB, van Wijk KJ. Proteomics, phylogenetics, and co-expression analyses indicate novel interactions in the plastid CLP chaperone-protease system. J Biol Chem 2022; 298:101609. [PMID: 35065075 PMCID: PMC8889267 DOI: 10.1016/j.jbc.2022.101609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
The chloroplast chaperone CLPC1 unfolds and delivers substrates to the stromal CLPPRT protease complex for degradation. We previously used an in vivo trapping approach to identify interactors with CLPC1 in Arabidopsis thaliana by expressing a STREPII-tagged copy of CLPC1 mutated in its Walker B domains (CLPC1-TRAP) followed by affinity purification and mass spectrometry. To create a larger pool of candidate substrates, adaptors, or regulators, we carried out a far more sensitive and comprehensive in vivo protein trapping analysis. We identified 59 highly enriched CLPC1 protein interactors, in particular proteins belonging to families of unknown functions (DUF760, DUF179, DUF3143, UVR-DUF151, HugZ/DUF2470), as well as the UVR domain proteins EXE1 and EXE2 implicated in singlet oxygen damage and signaling. Phylogenetic and functional domain analyses identified other members of these families that appear to localize (nearly) exclusively to plastids. In addition, several of these DUF proteins are of very low abundance as determined through the Arabidopsis PeptideAtlas http://www.peptideatlas.org/builds/arabidopsis/ showing that enrichment in the CLPC1-TRAP was extremely selective. Evolutionary rate covariation indicated that the HugZ/DUF2470 family coevolved with the plastid CLP machinery suggesting functional and/or physical interactions. Finally, mRNA-based coexpression networks showed that all 12 CLP protease subunits tightly coexpressed as a single cluster with deep connections to DUF760-3. Coexpression modules for other trapped proteins suggested specific functions in biological processes, e.g., UVR2 and UVR3 were associated with extraplastidic degradation, whereas DUF760-6 is likely involved in senescence. This study provides a strong foundation for discovery of substrate selection by the chloroplast CLP protease system.
Collapse
Affiliation(s)
- Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Evan S Forsythe
- Graduate Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Elena J S Michel
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Alissa M Williams
- Graduate Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sasha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | | | - Daniel B Sloan
- Graduate Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
7
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
8
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Low Cytoplasmic Magnesium Increases the Specificity of the Lon and ClpAP Proteases. J Bacteriol 2021; 203:e0014321. [PMID: 33941609 DOI: 10.1128/jb.00143-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha. The accumulated HspQ protein binds to the protease adaptor ClpS, hindering proteolysis of ClpS-dependent substrates of ClpAP, such as Oat, a promoter of antibiotic persistence. HspQ is acetylated by the protein acetyltransferase Pat from acetyl coenzyme A (acetyl-CoA) bound to the acetyl-CoA binding protein Qad. We now report that low cytoplasmic Mg2+ promotes qad expression, which protects substrates of Lon and ClpSAP by increasing HspQ amounts. The qad promoter is activated by PhoP, a regulatory protein highly activated in low cytoplasmic Mg2+ that also represses clpS transcription. Both the qad gene and PhoP repression of the clpS promoter are necessary for antibiotic persistence. PhoP also promotes qad transcription in Escherichia coli, which shares a similar PhoP box in the qad promoter region with S. Typhimurium, Salmonella bongori, and Enterobacter cloacae. Our findings identify cytoplasmic Mg2+ and the PhoP protein as critical regulators of protease specificity in multiple enteric bacteria. IMPORTANCE The bacterium Salmonella enterica serovar Typhimurium narrows down the spectrum of substrates degraded by the proteases Lon and ClpAP in response to low cytoplasmic Mg2+, a condition that decreases protein synthesis. This control is exerted by PhoP, a transcriptional regulator activated in low cytoplasmic Mg2+ that governs proteostasis and is conserved in enteric bacteria. The uncovered mechanism enables bacteria to control the abundance of preexisting proteins.
Collapse
|
10
|
Yeom J, Groisman EA. Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Sci Signal 2021; 14:14/667/eabc4235. [PMID: 33500334 DOI: 10.1126/scisignal.abc4235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When cells run out of nutrients, the growth rate greatly decreases. Here, we report that microorganisms, such as the bacterium Salmonella enterica serovar Typhimurium, speed up the return to a rapid growth state by preventing the proteolysis of functional proteins by ATP-dependent proteases while in the slow-growth state or stationary phase. This reduction in functional protein degradation resulted from a decrease in the intracellular concentration of ATP that was nonetheless sufficient to allow the continued degradation of nonfunctional proteins by the same proteases. Protein preservation occurred under limiting magnesium, carbon, or nitrogen conditions, indicating that this response was not specific to low availability of a particular nutrient. Nevertheless, the return to rapid growth required proteins that mediate responses to the specific nutrient limitation conditions, because the transcriptional regulator PhoP was necessary for rapid recovery only after magnesium starvation. Reductions in intracellular ATP and in ATP-dependent proteolysis also enabled the yeast Saccharomyces cerevisiae to recover faster from stationary phase. Our findings suggest that protein preservation during a slow-growth state is a conserved microbial strategy that facilitates the return to a growth state once nutrients become available.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
12
|
Polymerase delta-interacting protein 38 (PDIP38) modulates the stability and activity of the mitochondrial AAA+ protease CLPXP. Commun Biol 2020; 3:646. [PMID: 33159171 PMCID: PMC7647994 DOI: 10.1038/s42003-020-01358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Over a decade ago Polymerase δ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX. Our structural analysis revealed that PDIP38 is composed of two conserved domains separated by an α/β linker region. The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like β-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain of CLPX. In contrast, the C-terminal (DUF525) domain forms an immunoglobin-like β-sandwich fold, which contains a highly conserved putative substrate binding pocket. Importantly, PDIP38 modulates the substrate specificity of CLPX and protects CLPX from LONM-mediated degradation, which stabilises the cellular levels of CLPX. Collectively, our findings shed new light on the mechanism and function of mitochondrial PDIP38, demonstrating that PDIP38 is a bona fide adaptor protein for the mitochondrial protease, CLPXP. Strack et al find that Polymerase δ interacting protein 38 (PDIP38) is targeted to the mitochondrial matrix where it colocalises with the mitochondrial AAA + protein CLPXP. PDIP38 modulates the specificity of CLPXP in vitro and alters the stability of CLPX in vitro and in cells. The PDIP38 structure leads the authors to speculate that PDIP38 is a CLPXP adaptor.
Collapse
|
13
|
Hua C, Wang T, Shao X, Xie Y, Huang H, Liu J, Zhang W, Zhang Y, Ding Y, Jiang L, Wang X, Deng X. Pseudomonas syringaedual‐function protein Lon switches between virulence and metabolism by acting as bothDNA‐binding transcriptional regulator and protease in different environments. Environ Microbiol 2020; 22:2968-2988. [DOI: 10.1111/1462-2920.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Canfeng Hua
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Tingting Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Hao Huang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Jingui Liu
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Weitong Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingchao Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yiqing Ding
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Lin Jiang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen Guangdong China
| |
Collapse
|