1
|
Del Savio E, Maestro R. Beyond SMARCB1 Loss: Recent Insights into the Pathobiology of Epithelioid Sarcoma. Cells 2022; 11:cells11172626. [PMID: 36078034 PMCID: PMC9454995 DOI: 10.3390/cells11172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelioid sarcoma (ES) is a very rare and aggressive mesenchymal tumor of unclear origin and uncertain lineage characterized by a prevalent epithelioid morphology. The only recurrent genetic alteration reported in ES as yet is the functional inactivation of SMARCB1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1), a key component of the SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes. How SMARCB1 deficiency dictates the clinicopathological characteristics of ES and what other molecular defects concur to its malignant progression is still poorly understood. This review summarizes the recent findings about ES pathobiology, including defects in chromatin remodeling and other signaling pathways and their role as therapeutic vulnerabilities.
Collapse
|
2
|
Commentary on: SMARCB1 as a novel diagnostic and prognostic biomarker for osteosarcoma. Biosci Rep 2022; 42:231313. [PMID: 35583077 PMCID: PMC9202507 DOI: 10.1042/bsr20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
In the last couple of decades, biomarkers have been on the rise for diagnostic and predictive value. There has been a rush to identify new markers using new technologies and drug repurposing approaches. SMARCB1 acronym arises from the SWI/SNF (SWItch/Sucrose Non-Fermentable)-related Matrix-associated Actin-dependent Regulator of Chromatin subfamily B member 1 (SMARCB1). It is a molecule, whose role is associated with the sucrose metabolism. SMARCB1 is also called INI1 (Integrase Interactor 1). The molecule was discovered in the mid-1990s. Its role as a loss-of-function marker for malignant rhabdoid tumors (MRT) of renal and extrarenal origin has enormously expanded the spectrum of involved neoplasms since that time. Several tumors have been characterized by genetic aberrations in the SMARCB1 gene. They include reduction in expression, loss of expression, and mosaic expression. Most of the tumors are sarcomas, but a variegated group of tumors with mixed phenotypes has also been delineated. It is well known that the outcome of patients harboring genetic aberrations in the SMARCB1 gene has been poor. Guo et al. reported that reduced SMARCB1 expression occurred in 70% of osteosarcomas. Their data significantly correlated with poor neoadjuvant response. These authors emphasize a shorter progression-free and overall survival of the patients demonstrating an altered expression of this gene. Interestingly, mRNA in silico analysis established that SMARCB1 expression correlates with the response to chemotherapy of osteosarcoma patients, but there was no reliable correlation between SMARCB1 expression level and metastasis, response to neoadjuvant therapy, overall survival, and progression-free survival. The study involved a tissue microarray (TMA) on bone tumors that may limit the full evaluation of the gene expression. Nevertheless, Guo et al.’s study is remarkable. It expands the list of the tumors harboring an altered SMARCB1 gene expression and suggests that this marker should be investigated in every pathology workup for potential predictive value. On the other side, much work needs to be done if we hope that we strive to provide additional therapeutic strategies for osteosarcoma patients with altered SMARCB1 gene expression.
Collapse
|
3
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Sirohi D, Ohe C, Smith SC, Amin MB. SWI/SNF-deficient neoplasms of the genitourinary tract. Semin Diagn Pathol 2021; 38:212-221. [PMID: 33840529 DOI: 10.1053/j.semdp.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Since the discovery of association of SMARCB1 mutations with malignant rhabdoid tumors and renal medullary carcinoma, mutations in genes of the SWI/SNF chromatin remodeling complex have been increasingly identified across a diverse spectrum of neoplasms. As a group, SWI/SNF complex subunit mutations are now recognized to be the second most frequent type of mutations across tumors. SMARCB1 mutations were originally reported in malignant rhabdoid tumors of the kidney and thought to be pathognomonic for this tumor. However, more broadly, recognition of typical rhabdoid cytomorphology and SMARCB1 mutations beyond rhabdoid tumors has changed our understanding of the pathobiology of these tumors. While mutations of SWI/SNF complex are diagnostic of rhabdoid tumors and renal medullary carcinoma, their clinical relevance extends to potential prognostic and predictive utility in other tumors as well. Beyond SMARCB1, the PBRM1 and ARID1A genes are the most frequently altered members of the SWI/SNF complex in genitourinary neoplasms, especially in clear cell renal cell carcinoma and urothelial carcinoma. In this review, we provide an overview of alterations in the SWI/SNF complex encountered in genitourinary neoplasms and discuss their increasing clinical importance.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Chisato Ohe
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Steven C Smith
- Departments of Pathology and Urology, Virginia Commonwealth University, School of Medicine, PO Box 980662, Richmond, VA 23298, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
5
|
Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing to pediatric brain tumors. Neurooncol Pract 2021; 8:375-390. [PMID: 34277017 DOI: 10.1093/nop/npab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput sequencing approaches including paired tumor/normal sampling with therapeutic intent has demonstrated that 8%-19% of pediatric CNS tumor patients harbor a germline alteration in a classical tumor predisposition gene (NF1, P53). In addition, large-scale germline sequencing studies in unselected cohorts of pediatric neuro-oncology patients have demonstrated novel candidate tumor predisposition genes (ELP1 alterations in sonic hedgehog medulloblastoma). Therefore, the possibility of an underlying tumor predisposition syndrome (TPS) should be considered in all pediatric patients diagnosed with a CNS tumor which carries critical implications including accurate prognostication, selection of optimal therapy, screening, risk reduction, and family planning. The Pediatric Cancer Working Group of the American Association for Cancer Research (AACR) recently published consensus screening recommendations for children with the most common TPS. In this review, we provide an overview of the most relevant as well as recently identified TPS associated with the most frequently encountered pediatric CNS tumors with an emphasis on pathogenesis, genetic testing, clinical features, and treatment implications.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of Histone Modification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:1-16. [PMID: 33155134 DOI: 10.1007/978-981-15-8104-5_1] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the epi-information beyond the DNA sequence that can be inherited from parents to offspring. From years of studies, people have found that histone modifications, DNA methylation, and RNA-based mechanism are the main means of epigenetic control. In this chapter, we will focus on the general introductions of epigenetics, which is important in the regulation of chromatin structure and gene expression. With the development and expansion of high-throughput sequencing, various mutations of epigenetic regulators have been identified and proven to be the drivers of tumorigenesis. Epigenetic alterations are used to diagnose individual patients more accurately and specifically. Several drugs, which are targeting epigenetic changes, have been developed to treat patients regarding the awareness of precision medicine. Emerging researches are connecting the epigenetics and cancers together in the molecular mechanism exploration and the development of druggable targets.
Collapse
Affiliation(s)
- Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Tianjiao Du
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Nachuan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
7
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Sing TL, Hung MP, Ohnuki S, Suzuki G, San Luis BJ, McClain M, Unruh JR, Yu Z, Ou J, Marshall-Sheppard J, Huh WK, Costanzo M, Boone C, Ohya Y, Jaspersen SL, Brown GW. The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. J Cell Biol 2018; 217:2445-2462. [PMID: 29875260 PMCID: PMC6028538 DOI: 10.1083/jcb.201709009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/13/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Ploidy is tightly regulated in eukaryotic cells and is critical for cell function and survival. Cells coordinate multiple pathways to ensure replicated DNA is segregated accurately to prevent abnormal changes in chromosome number. In this study, we characterize an unanticipated role for the Saccharomyces cerevisiae "remodels the structure of chromatin" (RSC) complex in ploidy maintenance. We show that deletion of any of six nonessential RSC genes causes a rapid transition from haploid to diploid DNA content because of nondisjunction events. Diploidization is accompanied by diagnostic changes in cell morphology and is stably maintained without further ploidy increases. We find that RSC promotes chromosome segregation by facilitating spindle pole body (SPB) duplication. More specifically, RSC plays a role in distributing two SPB insertion factors, Nbp1 and Ndc1, to the new SPB. Thus, we provide insight into a role for a SWI/SNF family complex in SPB duplication and ploidy maintenance.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Minnie P Hung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Godai Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Bryan-Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jiongwen Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jesse Marshall-Sheppard
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Arnaud O, Le Loarer F, Tirode F. BAFfling pathologies: Alterations of BAF complexes in cancer. Cancer Lett 2018; 419:266-279. [PMID: 29374542 DOI: 10.1016/j.canlet.2018.01.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
To activate or repress specific genes, chromatin is constantly modified by chromatin-remodeling complexes. Among these complexes, the SWItch/Sucrose Non-Fermenting (SWI/SNF) complex, also referred to as BRG1-Associated Factor (BAF) complex, moves the nucleosome along chromatin using energy provided by ATP hydrolysis. In mammalian organisms, the SWI/SNF complex is composed of 10-15 subunits, depending on cell type, and a defect in one of these subunits can have dramatic consequences. In this review we will focus on the alterations identified in the SWI/SNF (BAF) complex subunits that lead to cancerous pathologies. While SMARCB1 was the first mutated subunit to be reported in a majority of malignant rhabdoid tumors, the advent of next-generation sequencing allowed the discovery of mutations in various SWI/SNF subunits within a broad spectrum of cancers. In most cases, the mutation leads to a loss of expression or to a truncated subunit unable to perform its function. Even though it is now commonly acknowledged that approximately 20% of all cancers present a mutation in a SWI/SNF subunit, some cancers are associated to a specific alteration of a SWI/SNF subunit, which acts either as tumor suppressor genes or as oncogenes, and therefore constitute diagnostic or prognostic biomarkers. Consistently, therapeutic strategies targeting SWI/SNF subunits or the genes affected downstream have been revealed to treat cancers.
Collapse
Affiliation(s)
- Ophelie Arnaud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France
| | | | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008, Lyon, France; Department of Translational Research and Innovation, Centre Léon Bérard, F-69008, Lyon, France.
| |
Collapse
|
11
|
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant tumor that is commonly associated with biallelic alterations of SMARCB1. Recurrent or refractory AT/RT has not been molecularly characterized as well. We present the case of a child with recurrent AT/RT who underwent clinically integrated molecular profiling (germline DNA and tumor DNA/RNA sequencing). This demonstrated a somatic lesion in CDKN1C alongside hallmark loss of SMARCB1. This data allowed us to explore potential personalized therapies for this patient and expose a molecular driver that may be involved in similar cases.
Collapse
|
12
|
Chan SH, Ngeow J. Germline mutation contribution to chromosomal instability. Endocr Relat Cancer 2017; 24:T33-T46. [PMID: 28808044 DOI: 10.1530/erc-17-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Genomic instability is a feature of cancer that fuels oncogenesis through increased frequency of genetic disruption, leading to loss of genomic integrity and promoting clonal evolution as well as tumor transformation. A form of genomic instability prevalent across cancer types is chromosomal instability, which involves karyotypic changes including chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a therapeutic strategy.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School Singapore, Singapore
| |
Collapse
|
13
|
Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci 2017; 108:547-552. [PMID: 28109176 PMCID: PMC5406539 DOI: 10.1111/cas.13173] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/11/2022] Open
Abstract
SMARCB1/INI1 is one of the core subunit proteins of the ATP-dependent SWI/SNF chromatin remodeling complex, and is identified as a potent and bona fide tumor suppressor. Interactions have been demonstrated between SMARCB1/INI1 and key proteins in various pathways related to tumor proliferation and progression: the p16-RB pathway, WNT signaling pathway, sonic hedgehog signaling pathway and Polycomb pathway. Initially, no detectable SMARCB1/INI1 protein expression was found in malignant rhabdoid tumor cells, whereas all other kinds of tumor cells and non-tumorous tissue showed SMARCB1/INI1 protein expression. Therefore, immunohistochemical testing for the SMARCB1/INI1 antibody has been considered useful in confirming the histologic diagnosis of malignant rhabdoid tumors. However, recently, aberrant expression of SMARCB1/INI1 has been found in various tumors such as epithelioid sarcomas, schwannomatosis, synovial sarcomas, and so on. In addition, it has been reported that aberrant expression can be classified into three patterns: complete loss, mosaic expression and reduced expression. Although the various pathways related to mechanisms of tumorigenesis and tumor proliferation are complexly intertwined, the clarification of these mechanisms may contribute to therapeutic strategies in SMARCB1/INI1-deficient tumors. In terms of pathological classifications, SMARCB1/INI1-deficient tumors may be re-classified by genetic backgrounds.
Collapse
Affiliation(s)
- Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Stojanova A, Tu WB, Ponzielli R, Kotlyar M, Chan PK, Boutros PC, Khosravi F, Jurisica I, Raught B, Penn LZ. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation. Cell Cycle 2016; 15:1693-705. [PMID: 27267444 PMCID: PMC4957596 DOI: 10.1080/15384101.2016.1146836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.
Collapse
Affiliation(s)
- Angelina Stojanova
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - William B Tu
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Romina Ponzielli
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Max Kotlyar
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Pak-Kei Chan
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Paul C Boutros
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada.,c Informatics and Biocomputing Program, Ontario Institute for Cancer Research , Toronto , Ontario , Canada
| | - Fereshteh Khosravi
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Igor Jurisica
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada.,d Department of Computer Science , University of Toronto , Toronto , Ontario , Canada
| | - Brian Raught
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Linda Z Penn
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| |
Collapse
|
15
|
Porrello A, Piergentili RB. Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric andTeen Patients Allows Identifying Two Main Classes of Biological ProcessesInvolved and New Potential Therapeutic Targets. Curr Genomics 2016; 17:33-61. [PMID: 27013923 PMCID: PMC4780474 DOI: 10.2174/1389202916666151014222603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Research on bladder neoplasms in pediatric and teen patients (BNPTP) has described 21 genes, which are variously involved in this disease and are mostly responsible for deregulated cell proliferation. However, due to the limited number of publications on this subject, it is still unclear what type of relationships there are among these genes and which are the chances that, while having different molecular functions, they i) act as downstream effector genes of well-known pro- or anti- proliferative stimuli and/or interplay with biochemical pathways having oncological relevance or ii) are specific and, possibly, early biomarkers of these pathologies. A Gene Ontology (GO)-based analysis showed that these 21 genes are involved in biological processes, which can be split into two main classes: cell regulation-based and differentiation/development-based. In order to understand the involvement/overlapping with main cancer-related pathways, we performed a meta-analysis dependent on the 189 oncogenic signatures of the Molecular Signatures Database (OSMSD) curated by the Broad Institute. We generated a binary matrix with 53 gene signatures having at least one hit; this analysis i) suggests that some genes of the original list show inconsistencies and might need to be experimentally re- assessed or evaluated as biomarkers (in particular, ACTA2) and ii) allows hypothesizing that important (proto)oncogenes (E2F3, ERBB2/HER2, CCND1, WNT1, and YAP1) and (putative) tumor suppressors (BRCA1, RBBP8/CTIP, and RB1-RBL2/p130) may participate in the onset of this disease or worsen the observed phenotype, thus expanding the list of possible molecular targets for the treatment of BNPTP.
Collapse
Affiliation(s)
- A. Porrello
- Comprehensive Cancer Center (LCCC), University of North Carolina (UNC)-Chapel Hill, Chapel Hill, 27599 NC, USA
| | - R. b Piergentili
- Institute of Molecular Biology and Pathology at CNR (CNR-IBPM); Department of Biology and Biotechnologies, Sapienza – Università di Roma, Italy
| |
Collapse
|
16
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
17
|
Ng JMY, Martinez D, Marsh ED, Zhang Z, Rappaport E, Santi M, Curran T. Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53. Cancer Res 2015; 75:4629-39. [PMID: 26363008 DOI: 10.1158/0008-5472.can-15-0874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022]
Abstract
Malignant rhabdoid tumors arise in several anatomic locations and are associated with poor outcomes. In the brain, these tumors are known as atypical teratoid/rhabdoid tumors (AT/RT). While genetically engineered models for malignant rhabdoid tumors exist, none of them recapitulate AT/RT, for which preclinical models remain lacking. In the majority of AT/RT, LOH occurs at the genetic locus SNF5 (Ini1/BAF47/Smarcb1), which functions as a subunit of the SWI/SNF chromatin-remodeling complex and a tumor suppressor in familial and sporadic malignant rhabdoid tumors. Therefore, we generated mice in which Snf5 was ablated specifically in nestin-positive and/or glial fibrillary acid protein (GFAP)-positive progenitor cells of the developing central nervous system (CNS). Snf5 ablation in nestin-positive cells resulted in early lethality that could not be rescued by loss of p53. However, Snf5 ablation in GFAP-positive cells caused a neurodegenerative phenotype exacerbated by p53 loss. Notably, these double mutants exhibited AT/RT development, associated with an earlier failure in granule neuron migration in the cerebellum, reduced neuronal projections in the hippocampus, degeneration of the corpus callosum, and ataxia and seizures. Gene expression analysis confirmed that the tumors that arose in Snf5/p53 mutant mice were distinct from other neural tumors and most closely resembled human AT/RT. Our findings uncover a novel role for Snf5 in oligodendrocyte generation and survival, and they offer evidence of the first genetically engineered mouse model for AT/RT in the CNS.
Collapse
Affiliation(s)
- Jessica M Y Ng
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric D Marsh
- Department of Neurology and Pediatrics, Division of Child Neurology The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric Rappaport
- The NAPCore Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Tom Curran
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
18
|
Jahn SW, Kashofer K, Halbwedl I, Winter G, El-Shabrawi-Caelen L, Mentzel T, Hoefler G, Liegl-Atzwanger B. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis. Mod Pathol 2015; 28:895-903. [PMID: 25769001 DOI: 10.1038/modpathol.2015.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Abstract
Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Stephan W Jahn
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Halbwedl
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerlinde Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
19
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
20
|
Stockman DL, Curry JL, Torres-Cabala CA, Watson IR, Siroy AE, Bassett RL, Zou L, Patel KP, Luthra R, Davies MA, Wargo JA, Routbort MA, Broaddus RR, Prieto VG, Lazar AJ, Tetzlaff MT. Use of clinical next-generation sequencing to identify melanomas harboringSMARCB1mutations. J Cutan Pathol 2015; 42:308-17. [DOI: 10.1111/cup.12481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- David L. Stockman
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jonathan L. Curry
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Carlos A. Torres-Cabala
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Ian R. Watson
- Department of Genomic Medicine; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Alan E. Siroy
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Roland L. Bassett
- Department of Biostatistics; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Lihua Zou
- The Eli and Edythe L. Broad Institute of Massachusetts; Institute of Technology and Harvard University; Cambridge Massachusetts USA
| | - Keyur P. Patel
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Rajyalakshmi Luthra
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jennifer A. Wargo
- Department of Surgery; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Mark A. Routbort
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Victor G. Prieto
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Alexander J. Lazar
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Michael T. Tetzlaff
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
21
|
Tajima S, Koda K. Atypical ossifying fibromyxoid tumor unusually located in the mediastinum: report of a case showing mosaic loss of INI-1 expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2139-2145. [PMID: 25973116 PMCID: PMC4396258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Ossifying fibromyxoid tumor (OFMT) is a rare soft tissue tumor. OFMT mostly arises in subcutaneous tissue or skeletal muscle of the extremities and is extremely unusual in the mediastinum. OFMT is classified as typical, atypical, or malignant as tumor aggressiveness increases. Herein, we presented a case of atypical OFMT that developed in the mediastinum of a 43-year-old woman. Because of its predominant hypercellular area and some tumor cells with high nuclear grade, it was not a typical OFMT. However, it did not have a sufficient number of mitotic figures to be classified as malignant. Hence, we classified it as atypical OFMT with some apparent characteristic features of OFMT, such as the presence of spicules of bone at the periphery of the tumor. Upon immunohistochemistry, it was positive for vimentin, S-100 protein, and CD10, which was consistent with a diagnosis of OFMT. Particularly noteworthy was the mosaic loss of INI-1 expression. Some OFMT and other exceptionally rare tumors have been reported to exhibit mosaic INI-1 loss. Inactivation of INI-1 gene and deregulation of PHF1 gene are thought to be involved in tumorigenesis of OFMT. Therefore, we speculated that the mosaic loss of INI-1 observed in the present case might also be related to a kind of abnormality of INI-1 as was reported previously.
Collapse
Affiliation(s)
- Shogo Tajima
- Department of Pathology, Shizuoka Saiseikai General HospitalShizuoka, Japan
| | - Kenji Koda
- Department of Pathology, Fujieda Municipal General HospitalShizuoka, Japan
| |
Collapse
|
22
|
Pancione M, Remo A, Zanella C, Sabatino L, Di Blasi A, Laudanna C, Astati L, Rocco M, Bifano D, Piacentini P, Pavan L, Purgato A, Greco F, Talamini A, Bonetti A, Ceccarelli M, Vendraminelli R, Manfrin E, Colantuoni V. The chromatin remodelling component SMARCB1/INI1 influences the metastatic behavior of colorectal cancer through a gene signature mapping to chromosome 22. J Transl Med 2013; 11:297. [PMID: 24286138 PMCID: PMC4220786 DOI: 10.1186/1479-5876-11-297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background INI1 (Integrase interactor 1), also known as SMARCB1, is the most studied subunit of chromatin remodelling complexes. Its role in colorectal tumorigenesis is not known. Methods We examined SMARCB1/INI1 protein expression in 134 cases of colorectal cancer (CRC) and 60 matched normal mucosa by using tissue microarrays and western blot and categorized the results according to mismatch repair status (MMR), CpG island methylator phenotype, biomarkers of tumor differentiation CDX2, CK20, vimentin and p53. We validated results in two independent data sets and in cultured CRC cell lines. Results Herein, we show that negative SMARCB1/INI1 expression (11% of CRCs) associates with loss of CDX2, poor differentiation, liver metastasis and shorter patients’ survival regardless of the MMR status or tumor stage. Unexpectedly, even CRCs displaying diffuse nuclear INI1 staining (33%) show an adverse prognosis and vimentin over-expression, in comparison with the low expressing group (56%). The negative association of SMARCB1/INI1-lack of expression with a metastatic behavior is enhanced by the TP53 status. By interrogating global gene expression from two independent cohorts of 226 and 146 patients, we confirm the prognostic results and identify a gene signature characterized by SMARCB1/INI1 deregulation. Notably, the top genes of the signature (BCR, COMT, MIF) map on the long arm of chromosome 22 and are closely associated with SMARCB1/INI1. Conclusion Our findings suggest that SMARCB1/INI1-dysregulation and genetic hot-spots on the long arm of chromosome 22 might play an important role in the CRC metastatic behavior and be clinically relevant as novel biomarkers.
Collapse
Affiliation(s)
- Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11 82100 Benevento, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schaefer IM, Ströbel P, Cameron S, Beham A, Otto C, Schildhaus HU, Agaimy A. Rhabdoid morphology in gastrointestinal stromal tumours (GISTs) is associated withPDGFRAmutations but does not imply aggressive behaviour. Histopathology 2013; 64:421-30. [DOI: 10.1111/his.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology; Brigham and Women's Hospital, Harvard Medical School; Boston MA USA
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
| | - Philipp Ströbel
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
| | - Silke Cameron
- Clinic of Gastroenterology and Endocrinology; University Medical Centre Göttingen; Göttingen Germany
| | - Alexander Beham
- Clinic of General, Visceral, and Paediatric Surgery; University Medical Centre Göttingen; Göttingen Germany
| | - Claudia Otto
- Institute of Pathology; University Hospital Freiburg; Freiburg Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
- Centre of Integrated Oncology Köln-Bonn; Institute of Pathology; University Hospital Cologne; Cologne Germany
| | - Abbas Agaimy
- Institute of Pathology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
24
|
Papp G, Krausz T, Stricker TP, Szendrői M, Sápi Z. SMARCB1 expression in epithelioid sarcoma is regulated by miR-206, miR-381, and miR-671-5p on Both mRNA and protein levels. Genes Chromosomes Cancer 2013; 53:168-76. [PMID: 24327545 DOI: 10.1002/gcc.22128] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022] Open
Abstract
Proximal type epithelioid sarcoma shares similarities with malignant rhabdoid tumor, including the lack of nuclear immunoreactivity of SMARCB1. Biallelic mutation of SMARCB1 has been convincingly established as the cause of loss of protein expression in rhabdoid tumor, but the cause in epithelioid sarcoma remains unknown. In our previous work, we demonstrated that DNA hypermethylation and post-translational modification mechanisms were not involved. In this current work, we explored the hypothesis that miRNAs regulate SMARCB1 gene expression in epithelioid sarcomas. In silico target prediction analysis revealed eight candidate miRNAs, and quantitative PCR-in 32 formalin-fixed, paraffin-embedded tumor samples comprising 30 epithelioid sarcomas and two malignant rhabdoid tumors-demonstrated significant (P < 0.001) overexpression of four miRNAs in epithelioid sarcomas: miR-206, miR-381, miR-671-5p, and miR-765. Two human tumors (fibrosarcoma and colon adenocarcinoma) and a normal cell line (human dermal fibroblast) with retained SMARCB1 expression were cultured for miRNA transient transfection (electroporation) experiments. SMARCB1 mRNA expression was analyzed by quantitative real-time PCR and immunostaining of SMARCB1 was performed to examine the effect of miRNAs transfections on both RNA and protein levels. Only three of the overexpressed miRNAs (miR-206, miR-381, and miR-671-5p) could silence the SMARCB1 mRNA expression in cell cultures; most effectively miR-206. Transfection of miR-206, miR-381, miR-671-5p, and some combination of them also eliminated SMARCB1 nuclear staining, demonstrating a strong effect on not only mRNA but also protein levels. Our results suggest loss of SMARCB1 protein expression in epithelioid sarcoma is due to the epigenetic mechanism of gene silencing by oncomiRs.
Collapse
Affiliation(s)
- Gergő Papp
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
25
|
Lee RS, Roberts CWM. Rhabdoid tumors: an initial clue to the role of chromatin remodeling in cancer. Brain Pathol 2013; 23:200-5. [PMID: 23432645 DOI: 10.1111/bpa.12021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/25/2022] Open
Abstract
The discovery of biallelic, inactivating SMARCB1 mutations in rhabdoid tumors (RTs) over a decade ago represented the first recognized link between chromatin remodeling and tumor suppression. SMARCB1 is a core subunit of the SWI/SNF chromatin remodeling complex, and the recent emergence of frequent mutations in genes that encode subunits of this complex across a wide variety of cancers suggests that perturbation of this chromatin remodeling complex constitutes a key driver of cancer formation. Despite the highly aggressive nature of RTs, they are genetically simple cancers that appear to lack chromosomal instability and contain very few mutations. Indeed, the mutation rate in RTs is among the lowest of all cancers sequenced, with loss of SMARCB1 as essentially the sole recurrent event. Given the genetic simplicity of this disease, understanding the chromatin dysregulation caused by SMARCB1 loss may provide more general insight into how epigenetic alterations can contribute to oncogenic transformation and may reveal opportunities for targeted therapy not only of RT but also the variety of other SWI/SNF mutant cancers.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
26
|
Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013; 341:111-26. [PMID: 23933176 DOI: 10.1016/j.canlet.2013.08.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers.
Collapse
|
27
|
Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene 2013; 33:3064-74. [PMID: 23851497 DOI: 10.1038/onc.2013.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
Human SNF5 (hSNF5; INI1, SMARCB1 or BAF47) is a component of the human SWI/SNF chromatin remodelling complex and a tumour suppressor mutated in rhabdoid tumours. It also associates with the integrase of the human immunodeficiency virus (HIV)-1. We show by fluorescence loss in photobleaching that hSNF5 is constantly shuttling between the nucleus and the cytoplasm, raising the question of what the role of hSNF5 is in the cytoplasm. Here, we demonstrate that hSNF5 directly interacts with the GTPase dynamin-2 (DNM2) in the cytoplasm. DNM2 is a large GTPase involved in endocytosis and vesicle dynamics, which has been related to HIV-1 internalization. We show that hSNF5 colocalizes with DNM2 in endocytic vesicles. Depletion of hSNF5, but not of other components of the SWI/SNF complex, destabilizes DNM2 and impairs DNM2-dependent endocytosis. Furthermore, we show that hSNF5 inhibits assembly-stimulated DNM2 GTPase activity but not basal GTPase activity in vitro. Altogether, these results indicate that hSNF5 affects both the stability and the activity of DNM2, uncovering an unexpected role of hSNF5 in modulating endocytosis, and open new perspectives in understanding the role of hSNF5 in tumour genesis.
Collapse
|
28
|
SMARCB1/INI1 Genetic Inactivation Is Responsible for Tumorigenic Properties of Epithelioid Sarcoma Cell Line VAESBJ. Mol Cancer Ther 2013; 12:1060-72. [DOI: 10.1158/1535-7163.mct-13-0005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJM, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M. Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria. Am J Med Genet A 2013; 161A:405-16. [PMID: 23401320 DOI: 10.1002/ajmg.a.35760] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Schwannomatosis is the third major form of neurofibromatosis and is characterized by the development of multiple schwannomas in the absence of bilateral vestibular schwannomas. The 2011 Schwannomatosis Update was organized by the Children's Tumor Foundation (www.ctf.org) and held in Los Angeles, CA, from June 5-8, 2011. This article summarizes the highlights presented at the Conference and represents the "state-of-the-field" in 2011. Genetic studies indicate that constitutional mutations in the SMARCB1 tumor suppressor gene occur in 40-50% of familial cases and in 8-10% of sporadic cases of schwannomatosis. Tumorigenesis is thought to occur through a four-hit, three-step model, beginning with a germline mutation in SMARCB1 (hit 1), followed by loss of a portion of chromosome 22 that contains the second SMARCB1 allele and one NF2 allele (hits 2 and 3), followed by mutation of the remaining wild-type NF2 allele (hit 4). Insights from research on HIV and pediatric rhabdoid tumors have shed light on potential molecular pathways that are dysregulated in schwannomatosis-related schwannomas. Mouse models of schwannomatosis have been developed and promise to further expand our understanding of tumorigenesis and the tumor microenvironment. Clinical reports have described the occurrence of intracranial meningiomas in schwannomatosis patients and in families with germline SMARCB1 mutations. The authors propose updated diagnostic criteria to incorporate new clinical and genetic findings since 2005. In the next 5 years, the authors expect that advances in basic research in the pathogenesis of schwannomatosis will lead toward clinical investigations of potential drug therapies.
Collapse
Affiliation(s)
- Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Surgery and actinomycin improve survival in malignant rhabdoid tumor. Sarcoma 2013; 2013:315170. [PMID: 23431248 PMCID: PMC3574752 DOI: 10.1155/2013/315170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/01/2013] [Indexed: 01/02/2023] Open
Abstract
Purpose. Malignant rhabdoid tumor (MRT) is an uncommon tumor that rarely occurs outside of renal and central nervous system (CNS) sites. Data from the literature were compiled to determine prognostic factors, including both demographic and treatment variables of malignant rhabdoid tumor, focusing on those tumors arising in extra-renal, extra-CNS (ER/EC MRT) sites. Patients and Methods. A systematic review and meta-analysis was performed by extracting demographic, treatment, and survival follow up on 167 cases of primary ER/EC MRT identified in the literature. Results. No survival differences were observed between those treated with or without radiation, or with or without chemotherapy. A Cox regression of overall survival revealed several independent prognostic factors. Surgical excision had a 74% (P = 0.0003) improvement in survival. Actinomycin had a 73% (P = 0.093) improvement in survival. Older age was associated with improved survival. The four-year survival, by Kaplan-Meier estimates, comparing patients less than two years old versus older than two at diagnosis was 11% versus 35%, respectively (P = 0.0001, Log-Rank). Conclusion. ER/EC MRT is a rare, soft-tissue tumor with a poor prognosis most commonly occurring in children. Surgical resection, treatment with actinomycin, and older age at diagnosis are all associated with improved survival.
Collapse
|
31
|
Maes M, Loyter A, Friedler A. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J 2012; 279:2795-809. [PMID: 22742518 DOI: 10.1111/j.1742-4658.2012.08680.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
32
|
RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas. Neurogenetics 2012; 13:267-74. [PMID: 22752724 DOI: 10.1007/s10048-012-0335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 01/29/2023]
Abstract
Germline mutations in the SMARCB1 gene cause familial schwannomatosis, a condition characterized by the presence of multiple schwannomas, although mutations in SMARCB1 have also been associated with rhadboid tumor predisposition syndrome 1 (RTPS1). Both schwannomatosis and RTPS1 are autosomal dominant conditions that predispose individuals to develop distinct types of tumors. We clinically and genetically characterized two families with schwannomatosis associated with SMARCB1 mutations. Eight affected members of these families developed different numbers of schwannomas and/or meningiomas at distinct ages, evidence that meningiomas are variably expressed in this condition. We identified two germline mutations in SMARCB1 associated with the familial disease, c.233-1G>A and the novel c.207_208dupTA mutation, which both proved to affect the main SMARCB1 isoforms at the RNA level distinctly. Interestingly, the c.207_208dupTA mutation had no effect on the coding sequence, pre-mRNA splicing or the level of expression of the SMARCB1 isoform 2. Furthermore, SMARCB1 isoforms harboring a premature termination codon were largely eliminated via the nonsense-mediated mRNA decay pathway. Our results highlight the importance of RNA-based studies to characterize SMARCB1 germline mutations in order to determine their impact on protein expression and gain further insight into the genetic basis of conditions associated with SMARCB1 mutations.
Collapse
|
33
|
Middeljans E, Wan X, Jansen PW, Sharma V, Stunnenberg HG, Logie C. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One 2012; 7:e33834. [PMID: 22442726 PMCID: PMC3307773 DOI: 10.1371/journal.pone.0033834] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/17/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Nucleosome translocation along DNA is catalyzed by eukaryotic SNF2-type ATPases. One class of SNF2-ATPases is distinguished by the presence of a C-terminal bromodomain and is conserved from yeast to man and plants. This class of SNF2 enzymes forms rather large protein complexes that are collectively called SWI/SNF complexes. They are involved in transcription and DNA repair. Two broad types of SWI/SNF complexes have been reported in the literature; PBAF and BAF. These are distinguished by the inclusion or not of polybromo and several ARID subunits. Here we investigated human SS18, a protein that is conserved in plants and animals. SS18 is a putative SWI/SNF subunit which has been implicated in the etiology of synovial sarcomas by virtue of being a target for oncogenic chromosomal translocations that underlie synovial sarcomas. METHODOLOGY/PRINCIPAL FINDINGS We pursued a proteomic approach whereby the SS18 open reading frame was fused to a tandem affinity purification tag and expressed in amenable human cells. The fusion permitted efficient and exclusive purification of so-called BAF-type SWI/SNF complexes which bear ARID1A/BAF250a or ARID1B/BAF250b subunits. This demonstrates that SS18 is a BAF subtype-specific SWI/SNF complex subunit. The same result was obtained when using the SS18-SSX1 oncogenic translocation product. Furthermore, SS18L1, DPF1, DPF2, DPF3, BRD9, BCL7A, BCL7B and BCL7C were identified. 'Complex walking' showed that they all co-purify with each other, defining human BAF-type complexes. By contrast,we demonstrate that human PHF10 is part of the PBAF complex, which harbors both ARID2/BAF200 and polybromo/BAF180 subunits, but not SS18 and nor the above BAF-specific subunits. CONCLUSIONS/SIGNIFICANCE SWI/SNF complexes are found in most eukaryotes and in the course of evolution new SWI/SNF subunits appeared. SS18 is found in plants as well as animals. Our results suggest that in both protostome and deuterostome animals, a class of BAF-type SWI/SNF complexes will be found that harbor SS18 or its paralogs, along with ARID1, DPF and BCL7 paralogs. Those BAF complexes are proteomically distinct from the eukaryote-wide PBAF-type SWI/SNF complexes. Finally, our results suggests that the human bromodomain factors BRD7 and BRD9 associate with PBAF and BAF, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Logie
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Carroll SL. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 2012; 123:321-48. [PMID: 22160322 PMCID: PMC3288530 DOI: 10.1007/s00401-011-0928-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 12/20/2022]
Abstract
Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [neurofibromatosis type 2 (NF2), schwannomatosis and Carney complex type 1] has greatly advanced our understanding of these mechanisms. The development of genetically engineered mice with ablation of NF1, NF2, SMARCB1/INI1 or PRKAR1A has confirmed the key role these genes play in peripheral nerve sheath tumorigenesis. Establishing the functions of the NF1, NF2, SMARCB1/INI1 and PRKAR1A gene products has led to the identification of key cytoplasmic signaling pathways promoting Schwann cell neoplasia and identified new therapeutic targets. Analyses of human neoplasms and genetically engineered mouse models have established that interactions with other tumor suppressors such as TP53 and CDKN2A promote neurofibroma-MPNST progression and indicate that intratumoral interactions between neoplastic and non-neoplastic cell types play an essential role in peripheral nerve sheath tumorigenesis. Recent advances have also provided new insights into the identity of the neural crest-derived populations that give rise to different types of peripheral nerve sheath tumors. Based on these findings, we now have an initial outline of the molecular mechanisms driving the pathogenesis of neurofibromas, MPNSTs and schwannomas. However, this improved understanding in turn raises a host of intriguing new questions.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, 1720 Seventh Avenue South, SC930G3, Birmingham, AL 35294-0017, USA.
| |
Collapse
|
35
|
Gasparini P, Facchinetti F, Boeri M, Lorenzetto E, Livio A, Gronchi A, Ferrari A, Massimino M, Spreafico F, Giangaspero F, Forni M, Maestro R, Alaggio R, Pilotti S, Collini P, Modena P, Sozzi G. Prognostic determinants in epithelioid sarcoma. Eur J Cancer 2011; 47:287-95. [PMID: 20932739 DOI: 10.1016/j.ejca.2010.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epithelioid sarcoma (ES) is a rare soft tissue neoplasm that usually arises in the distal extremities of young adults, presents a high rate of recurrences and metastases and frequently poses diagnostic dilemmas. In order to identify markers useful for patient stratification purposes, we investigated the prognostic impact of clinical and molecular patient characteristics, including the status of SMARCB1 tumour suppressor gene, in a consecutive series of ES cases. METHODS Kaplan-Meier survival curves were compared by the log-rank test. Immunophenotyping and SMARCB1 protein expression were analysed by immunohistochemistry or western blotting in 40 ES patients for which tumour material was available. Cases lacking SMARCB1 protein expression were investigated for the presence of gene mutations and gene deletions by exon sequencing, fluorescent in situ hybridization and quantitative PCR. RESULTS FNCLCC tumour grade 3 and proximal-type histology significantly correlated with shorter overall survival (log-rank p=0.0046 and p=0.0001, respectively). We identified loss of SMARCB1 protein expression in the majority of ES cases (25/40, 62.5%), including 24/34 (71%) adult cases but only 1/6 (17%) paediatric/adolescent cases (p=0.02, two-tailed Fisher's exact test). The absence of protein is strongly correlated with SMARCB1 gene deletion (p=0.003, two-tailed Fisher's exact test). We observed a trend towards the correlation between SMARCB1 inactivation and both higher tumour grading and a clinical course of the disease characterised by the occurrence of multiple relapses/metastasis. CONCLUSION These data show that both tumour grading and subtype are prognostic factors in ES. Loss of SMARCB1 protein expression in ES is a frequent occurrence mediated by gene deletion events, thus pointing to a crucial role of SMARCB1 in ES genesis. Analysis of SMARCB1 status in ES warrants prospective investigation as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Unit of Molecular Cytogenetics, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee S, Cimica V, Ramachandra N, Zagzag D, Kalpana GV. Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival. Cancer Res 2011; 71:3225-35. [PMID: 21521802 DOI: 10.1158/0008-5472.can-10-2167] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhabdoid tumors (RT) are aggressive pediatric malignancies with poor prognosis. INI1/hSNF5 is a component of the chromatin remodeling SWI/SNF complex and a tumor suppressor deleted in RT. Previous microarray studies indicated that reintroduction of INI1/hSNF5 into RT cells leads to repression of a high degree of mitotic genes including Aurora Kinase A (Aurora A, STK6). Here, we found that INI1/SNF5 represses Aurora A transcription in a cell-type-specific manner. INI1-mediated repression was observed in RT and normal cells but not in non-RT cell lines. Chromatin immunoprecipitation (ChIP) assay indicated that INI1/hSNF5 associates with Aurora A promoter in RT and normal cells but not in non-RT cells. Real-time PCR and immunohistochemical analyses of primary human and mouse RTs harboring mutations in INI1/hSNF5 gene indicated that Aurora A was overexpressed/derepressed in these tumor cells, confirming that INI1/hSNF5 represses Aurora A in vivo. Knockdown of Aurora A impaired cell growth, induced mitotic arrest and aberrant nuclear division leading to decreased survival, and increased cell death and caspase 3/7-mediated apoptosis in RT cells (but not in normal cells). These results indicated that Aurora A is a direct downstream target of INI1/hSNF5-mediated repression in RT cells and that loss of INI1/hSNF5 leads to aberrant overexpression of Aurora A in these tumors, which is required for their survival. We propose that a high degree of Aurora A expression may play a role in aggressive behavior of RTs and that targeting expression or activity of this gene is a novel therapeutic strategy for these tumors.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Genetics, Albert Einstein College of Medicine, New York University, New York, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, Bignell G, Butler A, Cho J, Dalgliesh GL, Galappaththige D, Greenman C, Hardy C, Jia M, Latimer C, Lau KW, Marshall J, McLaren S, Menzies A, Mudie L, Stebbings L, Largaespada DA, Wessels LFA, Richard S, Kahnoski RJ, Anema J, Tuveson DA, Perez-Mancera PA, Mustonen V, Fischer A, Adams DJ, Rust A, Chan-on W, Subimerb C, Dykema K, Furge K, Campbell PJ, Teh BT, Stratton MR, Futreal PA. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469:539-42. [PMID: 21248752 PMCID: PMC3030920 DOI: 10.1038/nature09639] [Citation(s) in RCA: 975] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/02/2010] [Indexed: 11/24/2022]
Abstract
The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ~3500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (KDM6A)1, JARID1C (KDM5C) and SETD22. These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control3. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodeling complex gene PBRM14 as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.
Collapse
Affiliation(s)
- Ignacio Varela
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coccé MC, Lubieniecki F, Kordes U, Alderete D, Gallego MS. A complex karyotype in an atypical teratoid/rhabdoid tumor: case report and review of the literature. J Neurooncol 2010; 104:375-80. [PMID: 21127945 DOI: 10.1007/s11060-010-0478-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a highly aggressive and uncommon neoplasm of the central nervous system that usually occurs in children less than 2 years of age. It is characterized by deletions and/or mutations of the INI1 tumor suppressor gene located in chromosome band 22q11.2. We performed cytogenetic and molecular studies of an AT/RT on a 15-month-old boy. The tumor showed a complex karyotype with one cell line showing monosomy 22 and another near-tetraploid one with additional chromosomal abnormalities, involving chromosomes 2, 3, 5, 6, and Y, which had not been previously described. Sequence analysis of the tumor did not identify mutations of the INI1 gene. The karyotypic evolution observed in this tumor suggests that INI1 has an epigenetic role in the maintenance of genome integrity by affecting genes, which produces mitotic defects and polyploidy. Finally, this case is the first to support the theory that loss of INI1 could induce the chromosomal instability that might be responsible for the genesis of this tumor.
Collapse
Affiliation(s)
- Mariela C Coccé
- Cytogenetics Laboratory, Genetics Department, Garrahan Pediatrics Hospital, Combate de los Pozos 1881, 1245 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
39
|
Srg3, a mouse homolog of BAF155, is a novel p53 target and acts as a tumor suppressor by modulating p21WAF1/CIP1 expression. Oncogene 2010; 30:445-56. [DOI: 10.1038/onc.2010.424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Abstract
The discovery that cancer can be governed above and beyond the level of our DNA presents a new era for designing therapies that reverse the epigenetic state of a tumour cell. Understanding how altered chromatin dynamics leads to malignancy is essential for controlling tumour cells while sparing normal cells. Polycomb and trithorax group proteins are evolutionarily conserved and maintain chromatin in the 'off' or 'on' states, thereby preventing or promoting gene expression, respectively. Recent work highlights the dynamic interplay between these opposing classes of proteins, providing new avenues for understanding how these epigenetic regulators function in tumorigenesis.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
41
|
Xu Y, Yan W, Chen X. SNF5, a core component of the SWI/SNF complex, is necessary for p53 expression and cell survival, in part through eIF4E. Oncogene 2010; 29:4090-100. [PMID: 20473326 PMCID: PMC3049166 DOI: 10.1038/onc.2010.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SNF5, a core component of the SWI/SNF chromatin remodeling complex, is expressed as two isoforms, SNF5a and SNF5b. SNF5 is a tumor suppressor as mutation of SNF5 leads to tumor formation and cooperates with p53 deficiency to enhance cancer susceptibility. Interestingly, lack of SNF5 inhibits cell survival and embryonic development potentially via abnormal activation of p53. To further examine this, we generated cell lines in that SNF5a, SNF5b, or both can be inducibly knocked down. We found that SNF5 knockdown leads to cell cycle arrest in G1, and SNF5a and SNF5b are functionally redundant. We also showed that SNF5 knockdown impairs p53-dependent transcription of p21 and MDM2. However, contrary to earlier reports that p53 is activated by SNF5 knockout in murine cells, SNF5 knockdown leads to decreased, but not increased, expression of both basal and stress-induced p53 in multiple human cell lines. In addition, we showed that SNF5 knockdown induces AMPK activation and inhibits eIF4E expression. Finally, we demonstrated that SNF5 knockdown inhibits p53 translation via eIF4E and replacement of eIF4E in SNF5-knockdown cells restores p53 expression and cell survival. Together, our results suggest that the p53 pathway is regulated by, and mediates the activity of, SNF5 in tumor suppression and pro-survival.
Collapse
Affiliation(s)
- Y Xu
- Center for Comparative Oncology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
42
|
Ben-Shlomo R, Kyriacou CP. Light pulses administered during the circadian dark phase alter expression of cell cycle associated transcripts in mouse brain. ACTA ACUST UNITED AC 2010; 197:65-70. [PMID: 20113839 DOI: 10.1016/j.cancergencyto.2009.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 01/11/2023]
Abstract
The circadian mode of cell division has been known for more than a century, but the association between circadian rhythms and mitosis is not yet clear. Synchronization of circadian oscillators with the outside world is achieved because light, or other external temporal cues, have acute effects on the levels of the clock's molecular components. Thus, an important question is whether environmental signals also affect transcription levels of cell machinery genes in a similar manner? In a microarray analysis, we have tested the influence of light pulses on the expression of transcripts in the mouse brain. Light pulses consistently affect transcription levels of genes that are essential and directly control the cell cycle mechanism, as well as levels of genes that are associated with the various cell cycle checkpoints. The changes in the levels and the direction of these changes could possibly lead to cell cycle arrest. We also found consistent changes in transcription levels of genes that are associated with tumorigenesis and are directly implicated with enhanced proliferation and metastasis.
Collapse
Affiliation(s)
- R Ben-Shlomo
- Department of Biology, Faculty of Science and Science Education, University of Haifa-Oranim, Tivon, Israel
| | | |
Collapse
|
43
|
DelBove J, Kuwahara Y, Mora-Blanco EL, Godfrey V, Funkhouser WK, Fletcher CDM, Van Dyke T, Roberts CWM, Weissman BE. Inactivation of SNF5 cooperates with p53 loss to accelerate tumor formation in Snf5(+/-);p53(+/-) mice. Mol Carcinog 2009; 48:1139-48. [PMID: 19676100 DOI: 10.1002/mc.20568] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant rhabdoid tumors (MRTs) are poorly differentiated pediatric cancers that arise in various anatomical locations and have a very poor outcome. The large majority of these malignancies are caused by loss of function of the SNF5/INI1 component of the SWI/SNF chromatin remodeling complex. However, the mechanism of tumor development associated with SNF5 loss remains unclear. Multiple studies have demonstrated a role for SNF5 in the regulation of cyclin D1, p16(INK4A), and pRb(f) activities suggesting it functions through the SWI/SNF complex to affect transcription of genes involved in cell cycle control. Previous studies in genetically engineered mouse models (GEMM) have shown that loss of SNF5 on a p53-null background significantly accelerates tumor development. Here, we use established GEMM to further define the relationship between the SNF5 and p53 tumor suppressor pathways. Combined haploinsufficiency of p53 and Snf5 leads to decreased latency for MRTs arising in alternate anatomical locations but not for the standard facial MRTs. We also observed acceleration in the appearance of T-cell lymphomas in the p53(+/-);Snf5(+/-) mice. Our studies suggest that loss of SNF5 activity does not bestow a selective advantage on the p53 spectrum of tumors in the p53(+/-);Snf5(+/-) mice. However, reduced p53 expression specifically accelerated the growth of a subset of MRTs in these mice.
Collapse
Affiliation(s)
- Jessica DelBove
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mouse models of CNS embryonal tumors. Brain Tumor Pathol 2009; 26:43-50. [PMID: 19856214 DOI: 10.1007/s10014-009-0253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 05/01/2009] [Indexed: 01/26/2023]
Abstract
Central nervous system (CNS) embryonal tumors are devastating cancers in children, consisting of medulloblastomas, CNS primitive neuroectodermal tumors, and atypical teratoid/rhabdoid tumors. One of the reasons that CNS embryonal tumors remain difficult to treat is their rarity, which makes conducting clinical trials for these tumors difficult. Recent advances of molecular biology have led us to identify molecular and genetic causality of brain tumors. Based on the genetic alterations found in humans, multiple models of human CNS embryonal tumors have been generated in genetically engineered mice. These mouse models are valuable tools for understanding brain tumor biology and discovering novel therapeutic targets and drugs. In this article, we review molecular and cytogenetic characteristics of human CNS embryonal tumors and corresponding mouse models that have been developed. These findings indicate that common genetic abnormalities are seen in variants of human CNS embryonal tumors, and multiple histological variants of these tumors can be generated from a single set of genetic abnormalities in mice. These data provide insight into the biology and classification of CNS embryonal tumors.
Collapse
|
45
|
Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation. Mol Cell Biol 2009; 29:6206-19. [PMID: 19805520 DOI: 10.1128/mcb.00503-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent studies have implicated the role of the SWI/SNF ATP-dependent chromatin remodeling complex in nuclear excision repair (NER), but the mechanism of its function has remained elusive. Here, we show that the human SWI/SNF component human SNF5 (hSNF5) interacts with UV damage recognition factor XPC and colocalizes with XPC at the damage site. Inactivation of hSNF5 did not affect the recruitment of XPC but affected the recruitment of ATM checkpoint kinase to the damage site and ATM activation by phosphorylation. Consequently, hSNF5 deficiency resulted in a defect in H2AX and BRCA1 phosphorylation at the damage site. However, recruitment of ATR checkpoint kinase to the damage site was not affected by hSNF5 deficiency, supporting that hSNF5 functions downstream of ATR. Additionally, ATM/ATR-mediated Chk2/Chk1 phosphorylation was not affected in hSNF5-depleted cells in response to UV irradiation, suggesting that the cell cycle checkpoint is intact in these cells. Taken together, the results indicate that the SWI/SNF complex associates with XPC at the damage site and thereby facilitates the access of ATM, which in turn promotes H2AX and BRCA1 phosphorylation. We propose that the SWI/SNF chromatin remodeling function is utilized to increase the DNA accessibility of NER machinery and checkpoint factors at the damage site, which influences NER and ensures genomic integrity.
Collapse
|
46
|
van Vugt JJFA, de Jager M, Murawska M, Brehm A, van Noort J, Logie C. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One 2009; 4:e6345. [PMID: 19626125 PMCID: PMC2710519 DOI: 10.1371/journal.pone.0006345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.
Collapse
Affiliation(s)
- Joke J. F. A. van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Martijn de Jager
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Magdalena Murawska
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - John van Noort
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Stojanova A, Penn LZ. The role of INI1/hSNF5 in gene regulation and cancer. Biochem Cell Biol 2009; 87:163-77. [PMID: 19234532 DOI: 10.1139/o08-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The precise modulation of chromatin dynamics is an essential and complex process that ensures the integrity of transcriptional regulation and prevents the transition of a normal cell into a cancerous one. ATP-dependent chromatin remodeling enzymes are multisubunit complexes that play a pivotal role in this operation through the mobilization of nucleosomes to promote DNA accessibility. Chromatin remodeling is mediated by the interaction of DNA-binding factors and individual members of this complex, directing its targeted recruitment to specific regulatory regions. In this review, we discuss a core subunit of the SWI/SNF ATP-dependent chromatin remodeling complex, known as INI1/hSNF5, in the context of transcriptional regulation and impact on cancer biology. In particular, we review current knowledge of the diverse protein interactions between INI1/hSNF5 and viral and cellular factors, with a special emphasis on the potent oncogene c-Myc.
Collapse
Affiliation(s)
- Angelina Stojanova
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G2M9, Canada
| | | |
Collapse
|
48
|
Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 2009; 10:373-84. [PMID: 19424290 DOI: 10.1038/nrm2693] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.
Collapse
|
49
|
Kohashi K, Izumi T, Oda Y, Yamamoto H, Tamiya S, Taguchi T, Iwamoto Y, Hasegawa T, Tsuneyoshi M. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol 2009; 40:349-55. [DOI: 10.1016/j.humpath.2008.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/05/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
50
|
Park JH, Park EJ, Hur SK, Kim S, Kwon J. Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst) 2008; 8:29-39. [PMID: 18822392 DOI: 10.1016/j.dnarep.2008.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 12/13/2022]
Abstract
Although SWI/SNF chromatin remodeling complexes play important roles in transcription, recent studies suggest that they also participate directly in DNA repair. In yeast, SWI/SNF and related RSC complexes have been shown to be recruited to the sites of DNA double strand breaks (DSBs) to facilitate DNA repair. We recently have shown that mammalian SWI/SNF complexes contribute to DBS repair by direct mechanisms of stimulating the phosphorylation of histone H2AX at DSB-surrounding chromatin. Here we investigated the role of mammalian SWI/SNF complexes in cell survival after DNA damage. When SWI/SNF was inactivated by means of dominant negativity or its catalytic subunit BRG1 was knockdowned by small interfering RNA, cells became highly susceptible to DNA damage-induced apoptosis. SWI/SNF inactivation had no effect on the activation and establishment of G2/M DNA damage checkpoint. However, SWI/SNF-defective cells could not sustain the G2/M checkpoint long enough to survive DNA damage, and rather underwent apoptosis before entering mitosis. We also found that, although the basal state and DNA damage-triggered activation of p53 were normal, the kinetics of p53 downregulation was significantly delayed in SWI/SNF-defective cells. Finally, the sustained p53 activation in SWI/SNF-defective cells was accompanied by accumulation of unrepaired DSBs owing to inefficient DNA repair. These results suggest that mammalian SWI/SNF complexes prevent DNA damage-induced apoptosis in part by facilitating efficient repair and thereby ensuring timely elimination of unrepaired DSBs that could otherwise lead to excessive prolongation of p53 activation.
Collapse
Affiliation(s)
- Ji-Hye Park
- Department of Life Science and Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | | | | | | | | |
Collapse
|