1
|
Cushion TD, Leca I, Keays DA. MAPping tubulin mutations. Front Cell Dev Biol 2023; 11:1136699. [PMID: 36875768 PMCID: PMC9975266 DOI: 10.3389/fcell.2023.1136699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubules are filamentous structures that play a critical role in a diverse array of cellular functions including, mitosis, nuclear translocation, trafficking of organelles and cell shape. They are composed of α/β-tubulin heterodimers which are encoded by a large multigene family that has been implicated in an umbrella of disease states collectively known as the tubulinopathies. De novo mutations in different tubulin genes are known to cause lissencephaly, microcephaly, polymicrogyria, motor neuron disease, and female infertility. The diverse clinical features associated with these maladies have been attributed to the expression pattern of individual tubulin genes, as well as their distinct Functional repertoire. Recent studies, however, have highlighted the impact of tubulin mutations on microtubule-associated proteins (MAPs). MAPs can be classified according to their effect on microtubules and include polymer stabilizers (e.g., tau, MAP2, doublecortin), destabilizers (e.g., spastin, katanin), plus-end binding proteins (e.g., EB1-3, XMAP215, CLASPs) and motor proteins (e.g., dyneins, kinesins). In this review we analyse mutation-specific disease mechanisms that influence MAP binding and their phenotypic consequences, and discuss methods by which we can exploit genetic variation to identify novel MAPs.
Collapse
Affiliation(s)
- Thomas D Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Keays
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
2
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
3
|
Yan M, Jin X, Liu Y, Chen H, Ye T, Hou Z, Su Z, Chen Y, Aslam M, Qin Y, Niu X. Identification and evaluation of the novel genes for transcript normalization during female gametophyte development in sugarcane. PeerJ 2021; 9:e12298. [PMID: 34721982 PMCID: PMC8532975 DOI: 10.7717/peerj.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Sugarcane (Saccharum spontaneum L.), the major sugar and biofuel feedstock crop, is cultivated mainly by vegetative propagation worldwide due to the infertility of female reproductive organs resulting in the reduction of quality and output of sugar. Deciphering the gene expression profile during ovule development will improve our understanding of the complications underlying sexual reproduction in sugarcane. Optimal reference genes are essential for elucidating the expression pattern of a given gene by quantitative real-time PCR (qRT-PCR). Method In this study, based on transcriptome data obtained from sugarcane ovule, eighteen candidate reference genes were identified, cloned, and their expression levels were evaluated across five developmental stages ovule (AC, MMC, Meiosis, Mitosis, and Mature). Results Our results indicated that FAB2 and MOR1 were the most stably expressed genes during sugarcane female gametophyte development. Moreover, two genes, cell cycle-related genes REC8 and CDK, were selected, and their feasibility was validated. This study provides important insights into the female gametophyte development of sugarcane and reports novel reference genes for gene expression research on sugarcane sexual reproduction.
Collapse
Affiliation(s)
- Maokai Yan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xingyue Jin
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yanhui Liu
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Huihuang Chen
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Tao Ye
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhimin Hou
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhenxia Su
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yingzhi Chen
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.,Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Xiaoping Niu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
4
|
How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020; 9:cells9051154. [PMID: 32392819 PMCID: PMC7290485 DOI: 10.3390/cells9051154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.
Collapse
|
5
|
Ebina H, Ji L, Sato M. CLASP promotes microtubule bundling in metaphase spindle independently of Ase1/PRC1 in fission yeast. Biol Open 2019; 8:bio.045716. [PMID: 31615768 PMCID: PMC6826280 DOI: 10.1242/bio.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microtubules in the mitotic spindle are organised by microtubule-associated proteins. In the late stage of mitosis, spindle microtubules are robustly organised through bundling by the antiparallel microtubule bundler Ase1/PRC1. In early mitosis, however, it is not well characterised as to whether spindle microtubules are actively bundled, as Ase1 does not particularly localise to the spindle at that stage. Here we show that the conserved microtubule-associated protein CLASP (fission yeast Peg1/Cls1) facilitates bundling of spindle microtubules in early mitosis. The peg1 mutant displayed a fragile spindle with unbundled microtubules, which eventually resulted in collapse of the metaphase spindle and abnormal segregation of chromosomes. Peg1 is known to be recruited to the spindle by Ase1 to stabilise antiparallel microtubules in late mitosis. However, we demonstrate that the function of Peg1 in early mitosis does not rely on Ase1. The unbundled spindle phenotype of the peg1 mutant was not seen in the ase1 mutant, and Peg1 preferentially localised to the spindle even in early mitosis unlike Ase1. Moreover, artificial overexpression of Ase1 in the peg1 mutant partially suppressed unbundled microtubules. We thus conclude that Peg1 bundles microtubules in early mitosis, in a distinct manner from its conventional Ase1-dependent functions in other cell cycle stages.
Collapse
Affiliation(s)
- Hirohisa Ebina
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Liang Ji
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan .,Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute for Medical-Oriented Structural Biology Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
6
|
Thoms D, Vineyard L, Elliott A, Shaw SL. CLASP Facilitates Transitions between Cortical Microtubule Array Patterns. PLANT PHYSIOLOGY 2018; 178:1551-1567. [PMID: 30327382 PMCID: PMC6288741 DOI: 10.1104/pp.18.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 05/23/2023]
Abstract
Acentrosomal plant microtubule arrays form patterns at the cell cortex that influence cellular morphogenesis by templating the deposition of cell wall materials, but the molecular basis by which the microtubules form the cortical array patterns remains largely unknown. Loss of the Arabidopsis (Arabidopsis thaliana) microtubule-associated protein, CYTOPLASMIC LINKER ASSOCIATED PROTEIN (AtCLASP), results in cellular growth anisotropy defects in hypocotyl cells. We examined the microtubule array patterning in atclasp-1 null mutants and discovered a significant defect in the timing of transitions between array patterns but no substantive defect in the array patterns per se. Detailed analysis and computational modeling of the microtubule dynamics in two atclasp-1 fluorescent tubulin marker lines revealed marker-dependent effects on depolymerization and catastrophe frequency predicted to alter the steady-state microtubule population. Quantitative in vivo analysis of the underlying microtubule array architecture showed that AtCLASP is required to maintain the number of growing microtubule plus ends during transitions between array patterns. We propose that AtCLASP plays a critical role in cellular morphogenesis through actions on new microtubules that facilitate array transitions.
Collapse
Affiliation(s)
- David Thoms
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Laura Vineyard
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Andrew Elliott
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
7
|
Schiklenk C, Petrova B, Kschonsak M, Hassler M, Klein C, Gibson TJ, Haering CH. Control of mitotic chromosome condensation by the fission yeast transcription factor Zas1. J Cell Biol 2018; 217:2383-2401. [PMID: 29735745 PMCID: PMC6028546 DOI: 10.1083/jcb.201711097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
How chromosomes compact into rod-shaped structures is a longstanding unresolved question of cell biology. Schiklenk et al. identify the transcription factor Zas1 as a central regulator of mitotic chromosome condensation in fission yeast and show that it uses a conserved transactivation domain–based mechanism to control gene expression. Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C2H2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe. By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation.
Collapse
Affiliation(s)
- Christoph Schiklenk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Boryana Petrova
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlo Klein
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
8
|
Zhu SH, Xue F, Li YJ, Liu F, Zhang XY, Zhao LJ, Sun YQ, Zhu QH, Sun J. Identification and Functional Characterization of a Microtubule-Associated Protein, GhCLASP2, From Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:882. [PMID: 29997641 PMCID: PMC6030384 DOI: 10.3389/fpls.2018.00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/06/2018] [Indexed: 05/10/2023]
Abstract
Cytoplasmic linker-associated proteins (CLASPs) are microtubule-associated proteins (MAPs) involved in regulation of dynamics of microtubules (MTs) that play an important role in plant growth and development. In this study, we identified cotton CLASP genes and investigated the function of GhCLASP2. GhCLASP2 was mainly expressed in stem and developing fibers, especially in fibers of the secondary cell wall deposition stage. Ectopic expression of GhCLASP2 in Arabidopsis increased the branching number of leaf trichomes and rescued the defective phenotypes of clasp-1. In cotton, overexpression of GhCLASP2 increased fiber strength, probably related to enhanced expression levels of tubulin, cellulose synthase, and expansin genes. Suppression of GhCLASP2 caused shorter internodes and semi-dwarfism, abnormal flower stigma, aborted anthers without pollen grains, and sterility. These changed phenotypes were similar to those observed in the Arabidopsis clasp-1 mutant. GhCLASP2 was co-localized with MTs according to transient experiment. These results suggest that GhCLASP2 functions similarly as AtCLASP, acting as a MAP and controlling cotton growth and development by regulating MTs.
Collapse
Affiliation(s)
- Shou-Hong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xin-Yu Zhang
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Lan-Jie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yu-Qiang Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Qian-Hao Zhu, Jie Sun,
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Qian-Hao Zhu, Jie Sun,
| |
Collapse
|
9
|
Yukawa M, Kawakami T, Okazaki M, Kume K, Tang NH, Toda T. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast. Mol Biol Cell 2017; 28:3647-3659. [PMID: 29021344 PMCID: PMC5706992 DOI: 10.1091/mbc.e17-08-0497] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Kinesin-5 is required for bipolar spindle assembly; yet in the absence of kinesins-5 and -14, cells can form spindles. In fission yeast, three distinct pathways compensate for their loss. Microtubule polymerase, kinesin-6, and microtubule cross-linker execute individual roles in concert at different mitotic stages in place of the two kinesins. Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoki Kawakami
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Masaki Okazaki
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kazunori Kume
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.,Laboratory of Cell Biology, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan .,Laboratory of Molecular and Chemical Cell Biology, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
10
|
Abstract
Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
11
|
Chan KY, Alonso-Nuñez M, Grallert A, Tanaka K, Connolly Y, Smith DL, Hagan IM. Dialogue between centrosomal entrance and exit scaffold pathways regulates mitotic commitment. J Cell Biol 2017; 216:2795-2812. [PMID: 28774892 PMCID: PMC5584178 DOI: 10.1083/jcb.201702172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
The fission yeast scaffold molecule Sid4 anchors the septum initiation network to the spindle pole body (SPB, centrosome equivalent) to control mitotic exit events. A second SPB-associated scaffold, Cut12, promotes SPB-associated Cdk1-cyclin B to drive mitotic commitment. Signals emanating from each scaffold have been assumed to operate independently to promote two distinct outcomes. We now find that signals from Sid4 contribute to the Cut12 mitotic commitment switch. Specifically, phosphorylation of Sid4 by NIMAFin1 reduces Sid4 affinity for its SPB anchor, Ppc89, while also enhancing Sid4's affinity for casein kinase 1δ (CK1δ). The resulting phosphorylation of Sid4 by the newly docked CK1δ recruits Chk2Cds1 to Sid4. Chk2Cds1 then expels the Cdk1-cyclin B antagonistic phosphatase Flp1/Clp1 from the SPB. Flp1/Clp1 departure can then support mitotic commitment when Cdk1-cyclin B activation at the SPB is compromised by reduction of Cut12 function. Such integration of signals emanating from neighboring scaffolds shows how centrosomes/SPBs can integrate inputs from multiple pathways to control cell fate.
Collapse
Affiliation(s)
- Kuan Yoow Chan
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Marisa Alonso-Nuñez
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Agnes Grallert
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Kayoko Tanaka
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Yvonne Connolly
- Biological Mass Spectrometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Duncan L Smith
- Biological Mass Spectrometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| | - Iain M Hagan
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, England, UK
| |
Collapse
|
12
|
Kelkar M, Martin SG. PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nat Commun 2015; 6:8445. [PMID: 26443240 PMCID: PMC4618306 DOI: 10.1038/ncomms9445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Cells couple growth with division and regulate size in response to nutrient availability. In rod-shaped fission yeast, cell-size control occurs at mitotic commitment. An important regulator is the DYRK-family kinase Pom1, which forms gradients from cell poles and inhibits the mitotic activator Cdr2, itself localized at the medial cortex. Where and when Pom1 modulates Cdr2 activity is unclear as Pom1 medial cortical levels remain constant during cell elongation. Here we show that Pom1 re-localizes to cell sides upon environmental glucose limitation, where it strongly delays mitosis. This re-localization is caused by severe microtubule destabilization upon glucose starvation, with microtubules undergoing catastrophe and depositing the Pom1 gradient nucleator Tea4 at cell sides. Microtubule destabilization requires PKA/Pka1 activity, which negatively regulates the microtubule rescue factor CLASP/Cls1/Peg1, reducing CLASP's ability to stabilize microtubules. Thus, PKA signalling tunes CLASP's activity to promote Pom1 cell side localization and buffer cell size upon glucose starvation.
Collapse
Affiliation(s)
- Manasi Kelkar
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Arthur AL, Yang SZ, Abellaneda AM, Wildonger J. Dendrite arborization requires the dynein cofactor NudE. J Cell Sci 2015; 128:2191-201. [PMID: 25908857 PMCID: PMC4450295 DOI: 10.1242/jcs.170316] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/10/2015] [Indexed: 12/28/2022] Open
Abstract
The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sihui Z Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison M Abellaneda
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Zeng CJT, Kim HR, Vargas Arispuro I, Kim JM, Huang AC, Liu B. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans. Mol Microbiol 2014; 94:506-21. [PMID: 25213466 DOI: 10.1111/mmi.12792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 12/19/2022]
Abstract
Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi.
Collapse
Affiliation(s)
- Cui J Tracy Zeng
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fennessy D, Grallert A, Krapp A, Cokoja A, Bridge AJ, Petersen J, Patel A, Tallada VA, Boke E, Hodgson B, Simanis V, Hagan IM. Extending the Schizosaccharomyces pombe molecular genetic toolbox. PLoS One 2014; 9:e97683. [PMID: 24848109 PMCID: PMC4029729 DOI: 10.1371/journal.pone.0097683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022] Open
Abstract
Targeted alteration of the genome lies at the heart of the exploitation of S. pombe as a model system. The rate of analysis is often determined by the efficiency with which a target locus can be manipulated. For most loci this is not a problem, however for some loci, such as fin1+, rates of gene targeting below 5% can limit the scope and scale of manipulations that are feasible within a reasonable time frame. We now describe a simple modification of transformation procedure for directing integration of genomic sequences that leads to a 5-fold increase in the transformation efficiency when antibiotic based dominant selection markers are used. We also show that removal of the pku70+ and pku80+ genes, which encode DNA end binding proteins required for the non-homologous end joining DNA repair pathway, increases the efficiency of gene targeting at fin1+ to around 75-80% (a 16-fold increase). We describe how a natMX6/rpl42+ cassette can be used for positive and negative selection for integration at a targeted locus. To facilitate the evaluation of the impact of a series of mutations on the function of a gene of interest we have generated three vector series that rely upon different selectable markers to direct the expression of tagged/untagged molecules from distinct genomic integration sites. pINTL and pINTK vectors use ura4+ selection to direct disruptive integration of leu1+ and lys1+ respectively, while pINTH vectors exploit nourseothricin resistance to detect the targeted disruption of a hygromycin B resistance conferring hphMX6 cassette that has been integrated on chromosome III. Finally, we have generated a series of multi-copy expression vectors that use resistance to nourseothricin or kanamycin/G418 to select for propagation in prototrophic hosts. Collectively these protocol modifications and vectors extend the versatility of this key model system.
Collapse
Affiliation(s)
- Dorota Fennessy
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Agnes Grallert
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Andrea Krapp
- Swiss Institute for Experimental Cancer Research, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Adisa Cokoja
- Swiss Institute for Experimental Cancer Research, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alan J. Bridge
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Janni Petersen
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Avinash Patel
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Victor A. Tallada
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Elvan Boke
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ben Hodgson
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Viesturs Simanis
- Swiss Institute for Experimental Cancer Research, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Iain M. Hagan
- Cell Division Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Kriegenburg F, Jakopec V, Poulsen EG, Nielsen SV, Roguev A, Krogan N, Gordon C, Fleig U, Hartmann-Petersen R. A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet 2014; 10:e1004140. [PMID: 24497846 PMCID: PMC3907333 DOI: 10.1371/journal.pgen.1004140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity. The accumulation of misfolded proteins represents a considerable threat to the health of individual cells and has been linked to severe diseases, including cancer and neurodegenerative disorders. To cope with this threat, especially under stress conditions, cells have evolved efficient quality control mechanisms. In general, these rely on molecular chaperones to either seize and refold misfolded proteins, or target them for degradation via the ubiquitin-proteasome system. At present, our understanding of what determines whether a chaperone commits to a folding or a degradation mode is limited. However, studies suggest that association with certain regulatory co-chaperones contributes to this process. Here, we show that certain BAG-1-type co-chaperones function in quality control by targeting misfolded kinetochore components for proteolysis. The presented genetic and biochemical data show that specific ubiquitin conjugating enzymes and ubiquitin-protein ligases maintain nuclear protein homeostasis and are required for upholding genome integrity.
Collapse
Affiliation(s)
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Esben G. Poulsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Colin Gordon
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Multiparametric analysis of CLASP-interacting protein functions during interphase microtubule dynamics. Mol Cell Biol 2013; 33:1528-45. [PMID: 23382075 DOI: 10.1128/mcb.01442-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein (+TIP) CLASP mediates dynamic cellular behaviors and interacts with numerous cytoplasmic proteins. While the influence of some CLASP interactors on MT behavior is known, a comprehensive survey of the proteins in the CLASP interactome as MT regulators is missing. Ultimately, we are interested in understanding how CLASP collaborates with functionally linked proteins to regulate MT dynamics. Here, we utilize multiparametric analysis of time-lapse MT +TIP imaging data acquired in Drosophila melanogaster S2R+ cells to assess the effects on individual microtubule dynamics for RNA interference-mediated depletion of 48 gene products previously identified to be in vivo genetic CLASP interactors. While our analysis corroborates previously described functions of several known CLASP interactors, its multiparametric resolution reveals more detailed functional profiles (fingerprints) that allow us to precisely classify the roles that CLASP-interacting genes play in MT regulation. Using these data, we identify subnetworks of proteins with novel yet overlapping MT-regulatory roles and also uncover subtle distinctions between the functions of proteins previously thought to act via similar mechanisms.
Collapse
|
18
|
Patel K, Nogales E, Heald R. Multiple domains of human CLASP contribute to microtubule dynamics and organization in vitro and in Xenopus egg extracts. Cytoskeleton (Hoboken) 2012; 69:155-65. [PMID: 22278908 PMCID: PMC3315288 DOI: 10.1002/cm.21005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/11/2011] [Accepted: 12/31/2011] [Indexed: 12/21/2022]
Abstract
Cytoplasmic linker associated proteins (CLASPs) comprise a class of microtubule (MT) plus end-binding proteins (+TIPs) that contribute to the dynamics and organization of MTs during many cellular processes, among them mitosis. Human CLASP proteins contain multiple MT-binding domains, including tumor over-expressed gene (TOG) domains, and a Ser-x-Ile-Pro (SxIP) motif known to target some +TIPs though interaction with end-binding protein 1 (EB1). However, how individual domains contribute to CLASP function is poorly understood. We generated full-length recombinant human CLASP1 and a series of truncation mutants and found that two N-terminal TOG domains make the strongest contribution to MT polymerization and bundling, but also identified a third TOG domain that further contributes to CLASP activity. Plus end tracking by CLASP requires the SxIP motif and interaction with EB1. The C-terminal coiled-coil domain mediates dimerization and association with many other factors, including the kinetochore motor centromere protein E (CENP-E), and the chromokinesin Xkid. Only the full-length protein was able to rescue spindle assembly in Xenopus egg extracts depleted of endogenous CLASP. Deletion of the C-terminal domain caused aberrant MT polymerization and dramatic spindle phenotypes, even with small amounts of added protein, indicating that proper localization of CLASP activity is essential to control MT polymerization during mitosis. © 2012 Wiley Periodicals, Inc
Collapse
Affiliation(s)
- Kieren Patel
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
19
|
Mimori-Kiyosue Y. Shaping microtubules into diverse patterns: molecular connections for setting up both ends. Cytoskeleton (Hoboken) 2011; 68:603-18. [PMID: 22021191 DOI: 10.1002/cm.20540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/17/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
Microtubules serve as rails for intracellular trafficking and their appropriate organization is critical for the generation of cell polarity, which is a foundation of cell differentiation, tissue morphogenesis, ontogenesis and the maintenance of homeostasis. The microtubule array is not just a static railway network; it undergoes repeated collapse and reassembly in diverse patterns during cell morphogenesis. In the last decade much progress has been made toward understanding the molecular mechanisms governing complex microtubule patterning. This review first revisits the basic principle of microtubule dynamics, and then provides an overview of how microtubules are arranged in highly shaped and functional patterns in cells changing their morphology by factors controlling the fate of microtubule ends.
Collapse
Affiliation(s)
- Yuko Mimori-Kiyosue
- Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe Institute, Kobe, Hyogo, Japan.
| |
Collapse
|
20
|
Samora CP, Mogessie B, Conway L, Ross JL, Straube A, McAinsh AD. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat Cell Biol 2011; 13:1040-50. [PMID: 21822276 DOI: 10.1038/ncb2297] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/14/2011] [Indexed: 12/21/2022]
Abstract
Correct positioning of the mitotic spindle is critical to establish the correct cell-division plane. Spindle positioning involves capture of astral microtubules and generation of pushing/pulling forces at the cell cortex. Here we show that the tau-related protein MAP4 and the microtubule rescue factor CLASP1 are essential for maintaining spindle position and the correct cell-division axis in human cells. We propose that CLASP1 is required to correctly capture astral microtubules, whereas MAP4 prevents engagement of excess dynein motors, thereby protecting the system from force imbalance. Consistent with this, MAP4 physically interacts with dynein-dynactin in vivo and inhibits dynein-mediated microtubule sliding in vitro. Depletion of MAP4, but not CLASP1, causes spindle misorientation in the vertical plane, demonstrating that force generators are under spatial control. These findings have wide biological importance, because spindle positioning is essential during embryogenesis and stem-cell homeostasis.
Collapse
Affiliation(s)
- Catarina P Samora
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
21
|
Al-Bassam J, Kim H, Brouhard G, van Oijen A, Harrison SC, Chang F. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev Cell 2010; 19:245-58. [PMID: 20708587 DOI: 10.1016/j.devcel.2010.07.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/12/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Spatial regulation of microtubule (MT) dynamics contributes to cell polarity and cell division. MT rescue, in which a MT stops shrinking and reinitiates growth, is the least understood aspect of MT dynamics. Cytoplasmic Linker Associated Proteins (CLASPs) are a conserved class of MT-associated proteins that contribute to MT stabilization and rescue in vivo. We show here that the Schizosaccharomyces pombe CLASP, Cls1p, is a homodimer that binds an alphabeta-tubulin heterodimer through conserved TOG-like domains. In vitro, CLASP increases MT rescue frequency, decreases MT catastrophe frequency, and moderately decreases MT disassembly rate. CLASP binds stably to the MT lattice, recruits tubulin, and locally promotes rescues. Mutations in the CLASP TOG domains demonstrate that tubulin binding is critical for its rescue activity. We propose a mechanism for rescue in which CLASP-tubulin dimer complexes bind along the MT lattice and reverse MT depolymerization with their bound tubulin dimer.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Asp1, a conserved 1/3 inositol polyphosphate kinase, regulates the dimorphic switch in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:4535-47. [PMID: 20624911 DOI: 10.1128/mcb.00472-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.
Collapse
|
23
|
Fujita I, Yamashita A, Yamamoto M. Contribution of dynein light intermediate and intermediate chains to subcellular localization of the dynein-dynactin motor complex in Schizosaccharomyces pombe. Genes Cells 2010; 15:359-72. [PMID: 20298435 DOI: 10.1111/j.1365-2443.2010.01386.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In fission yeast Schizosaccharomyces pombe, cytoplasmic dynein drives oscillatory nuclear movement during meiotic prophase, which may facilitate pairing of homologous chromosomes. Here, we report the identification of a dynein light intermediate chain (LIC) in fission yeast, termed Dli1p, and show that Dli1p and dynein intermediate chain (IC) Dic1p are essential for the appropriate subcellular localization and proper function of dynein during meiotic prophase. Expression of both the dli1 and dic1 genes was observed only in cells undergoing meiosis. Dli1p interacted and colocalized with dynein heavy chain Dhc1p. The subcellular localization of Dli1p was dependent on Dhc1p, and vice versa. The Dhc1p-Dli1p subcomplex could localize to the spindle pole body (SPB) with no aid of Dic1p and dynactin subunit Ssm4p, but its localization to microtubules was dependent on these two proteins. Dic1p localized to microtubules depending on Ssm4p, but not on Dhc1p and Dli1p. Its localization to the SPB, however, was dependent on Dhc1p and Dli1p. Localization of Ssm4p to the SPB was largely dependent on Dhc1p, Dli1p and Dic1p. Thus, Dli1p and Dic1p contribute differently in localizing the dynein-dynactin motor complex to organelles, providing novel insight into the in vivo function of dynein subunits in fission yeast.
Collapse
Affiliation(s)
- Ikumi Fujita
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
24
|
Abstract
The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mechanisms that regulate cell shape and cell division in fission yeast.
Collapse
|
25
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Snaith HA, Anders A, Samejima I, Sawin KE. New and old reagents for fluorescent protein tagging of microtubules in fission yeast; experimental and critical evaluation. Methods Cell Biol 2010; 97:147-72. [PMID: 20719270 DOI: 10.1016/s0091-679x(10)97009-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The green fluorescent protein (GFP) has become a mainstay of in vivo imaging in many experimental systems. In this chapter, we first discuss and evaluate reagents currently available to image GFP-labeled microtubules in the fission yeast Schizosaccharomyces pombe, with particular reference to time-lapse applications. We then describe recent progress in the development of robust monomeric and tandem dimer red fluorescent proteins (RFPs), including mCherry, TagRFP-T, mOrange2, mKate, and tdTomato, and we present data assessing their suitability as tags in S. pombe. As part of this analysis, we introduce new PCR tagging cassettes for several RFPs, new pDUAL-based plasmids for RFP-tagging, and new RFP-tubulin strains. These reagents should improve and extend the study of microtubules and microtubule-associated proteins in S. pombe.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH93JR, United Kingdom
| | | | | | | |
Collapse
|
27
|
Ortiz J, Funk C, Schäfer A, Lechner J. Stu1 inversely regulates kinetochore capture and spindle stability. Genes Dev 2009; 23:2778-91. [PMID: 19952112 DOI: 10.1101/gad.541309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae CLASP (CLIP-associated protein) Stu1 is essential for the establishment and maintenance of the mitotic spindle. Furthermore, Stu1 localizes to kinetochores. Here we show that, in prometaphase, Stu1 assembles in an Ndc80-dependent manner exclusively at kinetochores that are not attached to microtubules. Stu1 relocates to microtubules when a captured kinetochore reaches a spindle pole. This relocation does not depend on kinetochore biorientation, but requires a functional DASH complex. Stu1 at detached kinetochores facilitates kinetochore capturing. Furthermore, since most of the nuclear Stu1 is sequestered by one or a few detached kinetochores, the presence of detached kinetochores prevents Stu1 from localizing the spindle, and therefore from stabilizing the spindle. Thus, the sequestering of Stu1 by detached kinetochores serves as a checkpoint that keeps spindle poles in close proximity until all kinetochores are captured. This is likely to facilitate kinetochore biorientation. In agreement with the findings described above, a kinetochore mutant (okp1-52) that fails to release Stu1 from the kinetochore displays a severe spindle defect upon spindle pole body separation, and this defect can be rescued by destroying the okp1-52 kinetochore.
Collapse
Affiliation(s)
- Jennifer Ortiz
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Martín-García R, Mulvihill DP. Myosin V spatially regulates microtubule dynamics and promotes the ubiquitin-dependent degradation of the fission yeast CLIP-170 homologue, Tip1. J Cell Sci 2009; 122:3862-72. [PMID: 19808886 DOI: 10.1242/jcs.054460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coordination between microtubule and actin cytoskeletons plays a crucial role during the establishment of cell polarity. In fission yeast, the microtubule cytoskeleton regulates the distribution of actin assembly at the new growing end during the monopolar-to-bipolar growth transition. Here, we describe a novel mechanism in which a myosin V modulates the spatial coordination of proteolysis and microtubule dynamics. In cells lacking a functional copy of the class V myosin, Myo52, the plus ends of microtubules fail to undergo catastrophe on contacting the cell end and continue to grow, curling around the end of the cell. We show that this actin-associated motor regulates the efficient ubiquitin-dependent proteolysis of the Schizosaccharomyces pombe CLIP-170 homologue, Tip1. Myo52 facilitates microtubule catastrophe by enhancing Tip1 removal from the plus end of growing microtubules at the cell tips. There, Myo52 and the ubiquitin receptor, Dph1, work in concert to target Tip1 for degradation.
Collapse
|
29
|
Ling YC, Vjestica A, Oliferenko S. Nucleocytoplasmic shuttling of the TACC protein Mia1p/Alp7p is required for remodeling of microtubule arrays during the cell cycle. PLoS One 2009; 4:e6255. [PMID: 19606211 PMCID: PMC2705800 DOI: 10.1371/journal.pone.0006255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/10/2009] [Indexed: 11/19/2022] Open
Abstract
Microtubule arrays are remodeled as cells proceed through the cell cycle. It is important to understand how remodeling is regulated in time and space. In fission yeast, the conserved microtubule associated TACC/TOG complex plays an important role in organizing microtubules throughout the cell cycle. Here we show that this complex undergoes nucleocytoplasmic shuttling through the nuclear import and export signals located in the TACC protein Mia1p/Alp7p. When the Crm1p-dependent nuclear export signal of Mia1p is disabled, Mia1p accumulates in the nucleus while its partner protein Alp14p/TOG is restricted to the cytoplasm. This leads to defects in assembly of both interphase arrays and the mitotic spindle. Artificial targeting of Alp14p to the nucleus partially rescues the mitotic spindle defects caused by lack of Mia1p nuclear export. Interestingly, the nuclear export sequence of Mia1p appears to overlap with the Alp14p binding site. We propose that intricate regulation of the subcellular distribution of TACC/TOG complexes drives microtubule array remodeling as cells progress through the cell cycle.
Collapse
|
30
|
Tallada VA, Tanaka K, Yanagida M, Hagan IM. The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope. ACTA ACUST UNITED AC 2009; 185:875-88. [PMID: 19487457 PMCID: PMC2711587 DOI: 10.1083/jcb.200812108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB.
Collapse
Affiliation(s)
- Victor A Tallada
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M204BX, England, UK
| | | | | | | |
Collapse
|
31
|
Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol 2009; 5:250. [PMID: 19293830 PMCID: PMC2671921 DOI: 10.1038/msb.2009.5] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/12/2022] Open
Abstract
Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length-dependent increase in the catastrophe frequency that is mediated by kinesin-8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin-8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells.
Collapse
|
32
|
Establishing new sites of polarization by microtubules. Curr Biol 2009; 19:83-94. [PMID: 19147354 DOI: 10.1016/j.cub.2008.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Microtubules (MTs) participate in the spatial regulation of actin-based processes such as cytokinesis and cell polarization. The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that exhibits polarized cell growth at cell tips. MT plus ends contact and shrink from the cell tips and contribute to polarity regulation. RESULTS Here, we investigate the effects of changing cell shape on MTs and cell-polarization machinery. We physically bend fission yeast cells by forcing them into microfabricated femtoliter chambers. In these bent cells, MTs maintain a straight axis and contact and shrink from cortical sites at the sides of cells. At these ectopic sites, polarity factors such as bud6p, for3p (formin), and cdc42p are recruited and assemble actin cables in a MT-dependent manner. MT contact at the cortex induces the appearance of a bud6p dot within seconds. The accumulation of polarity factors leads to cell growth at these sites, when the MT-associated polarity factor tea1p is absent. This process is dependent on MTs, mal3p (EB1), moe1p (an EB1-binding protein), and for3p but, surprisingly, is independent of the tea1p-tea4p pathway. CONCLUSIONS These studies provide a direct demonstration for how MTs induce actin assembly at specific locations on the cell cortex and begin to identify a new pathway involved in this process. MT interactions with the cortex may be regulated by cortical-attachment sites. These findings highlight the crosstalk between cell shape, polarity mechanisms, and MTs responsible for cell morphogenesis.
Collapse
|
33
|
Bratman SV, Chang F. Mechanisms for maintaining microtubule bundles. Trends Cell Biol 2008; 18:580-6. [PMID: 18951798 DOI: 10.1016/j.tcb.2008.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
The dynamics of microtubules (MTs) are crucial to many of their functions. Certain MT structures, such as the mitotic spindle apparatus, exhibit high MT turnover yet maintain their mass stably through long periods of time. Here, we highlight what are emerging as two important mechanisms for maintaining MT bundles: the first, MT nucleation from pre-existing MTs by means of gamma-tubulin-containing complexes; and the second, MT 'rescue' by the stabilizing protein CLASP. As examples, we describe recent advances in understanding the assembly and maintenance of simple MT bundles in fission yeast and plant cells, which have implications for the bundles of the animal mitotic spindle.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
34
|
Chiron S, Bobkova A, Zhou H, Yaffe MP. CLASP regulates mitochondrial distribution in Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2008; 182:41-9. [PMID: 18606849 PMCID: PMC2447910 DOI: 10.1083/jcb.200712147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Movement of mitochondria in Schizosaccharomyces pombe depends on their association with the dynamic, or plus ends, of microtubules, yet the molecular basis for this interaction is poorly understood. We identified mmd4 in a screen of temperature-sensitive S. pombe strains for aberrant mitochondrial morphology and distribution. Cells with the mmd4 mutation display mitochondrial aggregation near the cell ends at elevated temperatures, a phenotype similar to mitochondrial defects observed in wild-type cells after microtubule depolymerization. However, microtubule morphology and function appear normal in the mmd4 mutant. The mmd4 lesion maps to peg1+, which encodes a microtubule-associated protein with homology to cytoplasmic linker protein–associated proteins (mammalian microtubule plus end–binding proteins). Peg1p localizes to the plus end of microtubules and to mitochondria and is recovered with mitochondria during subcellular fractionation. This mitochondrial-associated fraction of Peg1p displays properties of a peripherally associated protein. Peg1p is the first identified microtubule plus end–binding protein required for mitochondrial distribution and likely functions as a molecular link between mitochondria and microtubules.
Collapse
Affiliation(s)
- Stéphane Chiron
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
35
|
Meadows JC, Millar J. Latrunculin A delays anaphase onset in fission yeast by disrupting an Ase1-independent pathway controlling mitotic spindle stability. Mol Biol Cell 2008; 19:3713-23. [PMID: 18562692 DOI: 10.1091/mbc.e08-02-0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It has been proposed previously that latrunculin A, an inhibitor of actin polymerization, delays the onset of anaphase by causing spindle misorientation in fission yeast. However, we show that Delta mto1 cells, which are defective in nucleation of cytoplasmic microtubules, have profoundly misoriented spindles but are not delayed in the timing of sister chromatid separation, providing compelling evidence that fission yeast does not possess a spindle orientation checkpoint. Instead, we show that latrunculin A delays anaphase onset by disrupting interpolar microtubule stability. This effect is abolished in a latrunculin A-insensitive actin mutant and exacerbated in cells lacking Ase1, which cross-links antiparallel interpolar microtubules at the spindle midzone both before and after anaphase. These data indicate that both Ase1 and an intact actin cytoskeleton are required for preanaphase spindle stability. Finally, we show that loss of Ase1 activates a checkpoint that requires only the Mad3, Bub1, and Mph1, but not Mad1, Mad2, or Bub3 checkpoint proteins.
Collapse
Affiliation(s)
- John C Meadows
- Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | |
Collapse
|
36
|
Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008; 9:309-22. [PMID: 18322465 DOI: 10.1038/nrm2369] [Citation(s) in RCA: 778] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of evolutionarily conserved cellular factors that accumulate at the ends of growing microtubules. They form dynamic networks through the interaction of a limited set of protein modules, repeat sequences and linear motifs that bind to each other with moderate affinities. +TIPs regulate different aspects of cell architecture by controlling microtubule dynamics, microtubule interactions with cellular structures and signalling factors, and the forces that are exerted on microtubule networks.
Collapse
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | | |
Collapse
|
37
|
Courtheoux T, Gay G, Reyes C, Goldstone S, Gachet Y, Tournier S. Dynein participates in chromosome segregation in fission yeast. Biol Cell 2008; 99:627-37. [PMID: 17561805 DOI: 10.1042/bc20070047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi-orientation). At the metaphase-anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule-dependent forces. RESULTS We have studied the role of the minus-end-directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle-assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2-dependent spindle-assembly checkpoint. CONCLUSIONS These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi-orientation during early mitosis.
Collapse
Affiliation(s)
- Thibault Courtheoux
- LBCMCP-CNRS UMR5088, Institut d'Exploration, Fonctionelle des Génomes (IFR109), Université Paul, Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
38
|
Bratman SV, Chang F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev Cell 2008; 13:812-27. [PMID: 18061564 DOI: 10.1016/j.devcel.2007.10.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 08/10/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.
Collapse
Affiliation(s)
- Scott V Bratman
- Microbiology Department, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
39
|
Sousa A, Reis R, Sampaio P, Sunkel CE. TheDrosophilaCLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. ACTA ACUST UNITED AC 2007; 64:605-20. [PMID: 17487886 DOI: 10.1002/cm.20208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An important group of microtubule associated proteins are the plus-end tracking proteins which includes the Mast/Orbit/CLASPs family amongst others. Several of these proteins have important functions during interphase and mitosis in the modulation of the dynamic properties of microtubules, however, the precise mechanism remains to be elucidated. To investigate the role of Mast in the regulation of microtubule behaviour during interphase, we used RNAi in Drosophila S2 culture cells stably expressing GFP-alpha-tubulin and followed the behaviour of microtubules in vivo. Mast depleted cells show a significant reduction of microtubule density and an abnormal interphase microtubule array that rarely reaches the cell cortex. Analysis of the dynamic parameters revealed that in the absence of Mast, microtubules are highly dynamic, constantly growing or shrinking. These alterations are characterized by a severe reduction in the transition frequencies to and from the pause state. Moreover, analysis of de novo microtubule polymerization after cold treatment showed that Mast is not required for nucleation since Mast depleted cells nucleate microtubules soon after return to normal temperature. Taken together these results suggest that Mast plays an essential role in reducing the dynamic behaviour of microtubules by specifically promoting the pause state.
Collapse
Affiliation(s)
- Aureliana Sousa
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
40
|
Höög JL, Schwartz C, Noon AT, O'Toole ET, Mastronarde DN, McIntosh JR, Antony C. Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 2007; 12:349-61. [PMID: 17336902 DOI: 10.1016/j.devcel.2007.01.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 12/08/2006] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.
Collapse
Affiliation(s)
- Johanna L Höög
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Kerres A, Jakopec V, Fleig U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell 2007; 18:2441-54. [PMID: 17442892 PMCID: PMC1924829 DOI: 10.1091/mbc.e06-08-0738] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spc7, a member of the conserved Spc105/KNL-1 family of kinetochore proteins, was identified as an interaction partner of the EB1 homologue Mal3. Spc7 associates with the central centromere region of the chromosome but does not affect transcriptional silencing. Here, we show that Spc7 is required for the integrity of the spindle as well as for targeting of MIND but not of Ndc80 complex components to the kinetochore. Spindle defects in spc7 mutants were severe ranging from the inability to form a bipolar spindle in early mitosis to broken spindles in midanaphase B. spc7 mutant phenotypes were partially rescued by extra alpha-tubulin or extra Mal2. Thus, Spc7 interacts genetically with the Mal2-containing Sim4 complex.
Collapse
Affiliation(s)
- Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
42
|
Howard J, Hyman AA. Microtubule polymerases and depolymerases. Curr Opin Cell Biol 2006; 19:31-5. [PMID: 17184986 DOI: 10.1016/j.ceb.2006.12.009] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/08/2006] [Indexed: 02/07/2023]
Abstract
The variety of shapes and sizes of the microtubule cytoskeleton is as great as the number of different cell types. This large variety is a consequence of the dynamic properties of microtubules, which allow them to adopt distributions of arbitrary size and form. How is the distribution of microtubule lengths controlled? Recent work suggests that the length distribution is controlled, at least in part, by the activity of microtubule polymerases and depolymerases, which accelerate microtubule growth and shrinkage. Specifically, biochemical and single-molecule studies have shown how MCAK (kinesin-13) and Kip3p (kinesin-8) accelerate depolymerization and how XMAP215 may accelerate growth. Studies on the yeast Dam1 complex have shown how proteins can couple a cellular structure, the kinetochore, to the ends of polymerizing and depolymerizing microtubules.
Collapse
|