1
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
KUROKAWA A, YAMAMOTO Y. Immunohistochemical identification of T and B lymphocytes in formalin-fixed, paraffin-embedded tissues of 53 avian species using commercial antibodies. J Vet Med Sci 2023; 85:1121-1130. [PMID: 37661384 PMCID: PMC10600538 DOI: 10.1292/jvms.23-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Providing a method to detect avian lymphocytes by immunohistochemistry (IHC) would be helpful for analyzing immune function and diagnosing diseases in birds. In this study, we comprehensively examined the immunohistochemical identification of avian T and B lymphocytes in formalin-fixed, paraffin-embedded tissues from 53 avian species across 15 orders, using eight commercially available lymphocyte markers. T lymphocytes from all 53 avian species tested were specifically detected by IHC using the anti-CD3 antibody (clone F7.2.38). The appropriate antibody for detecting avian B lymphocytes in IHC varied depending on the avian species. B lymphocytes were specifically labeled by IHC in 46 of 53 avian species (86.8%) using any of seven B cell markers. The anti-PAX5 antibody (clone SP34) immunohistochemically detected B lymphocytes from the majority of avian species (41 out of 53 species), excluding those in the orders Falconiformes (falcons) and Passeriformes (oscines). The anti-BAFF-R antibody (clone 2C4) proved suitable for detecting B lymphocytes in the orders Galliformes (landfowls) and Anseriformes (waterfowls) in IHC. Caution is advised when using the anti-BLA36 (clone A27-42) and two anti-CD20 (clone L26 and product No. PA5-16701) antibodies, which are commonly used as B cell markers in mammals, for detecting avian B lymphocytes. These antibodies reacted with cells located in both T and B cell areas in certain avian species. The anti-Bu-1a/b (clone AV20) and anti-CD79a (clone HM57) antibodies were found not to bind to B lymphocytes in various avian species in IHC.
Collapse
Affiliation(s)
- Aoi KUROKAWA
- National Institute of Animal Health, National Agriculture
and Food Research Organization, Ibaraki, Japan
| | - Yu YAMAMOTO
- National Institute of Animal Health, National Agriculture
and Food Research Organization, Ibaraki, Japan
| |
Collapse
|
3
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
4
|
Jia Z, Gu Z. PAX5 alterations in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:1023606. [PMID: 36387144 PMCID: PMC9640836 DOI: 10.3389/fonc.2022.1023606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
PAX5, a master regulator of B cell development and maintenance, is one of the most common targets of genetic alterations in B-cell acute lymphoblastic leukemia (B-ALL). PAX5 alterations consist of copy number variations (whole gene, partial, or intragenic), translocations, and point mutations, with distinct distribution across B-ALL subtypes. The multifaceted functional impacts such as haploinsufficiency and gain-of-function of PAX5 depending on specific variants have been described, thereby the connection between the blockage of B cell development and the malignant transformation of normal B cells has been established. In this review, we provide the recent advances in understanding the function of PAX5 in orchestrating the development of both normal and malignant B cells over the past decade, with a focus on the PAX5 alterations shown as the initiating or driver events in B-ALL. Recent large-scale genomic analyses of B-ALL have identified multiple novel subtypes driven by PAX5 genetic lesions, such as the one defined by a distinct gene expression profile and PAX5 P80R mutation, which is an exemplar leukemia entity driven by a missense mutation. Although altered PAX5 is shared as a driver in B-ALL, disparate disease phenotypes and clinical outcomes among the patients indicate further heterogeneity of the underlying mechanisms and disturbed gene regulation networks along the disease development. In-depth mechanistic studies in human B-ALL and animal models have demonstrated high penetrance of PAX5 variants alone or concomitant with other genetic lesions in driving B-cell malignancy, indicating the altered PAX5 and deregulated genes may serve as potential therapeutic targets in certain B-ALL cases.
Collapse
Affiliation(s)
- Zhilian Jia
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
The Pleiotropy of PAX5 Gene Products and Function. Int J Mol Sci 2022; 23:ijms231710095. [PMID: 36077495 PMCID: PMC9456430 DOI: 10.3390/ijms231710095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
PAX5, a member of the Paired Box (PAX) transcription factor family, is an essential factor for B-lineage identity during lymphoid differentiation. Mechanistically, PAX5 controls gene expression profiles, which are pivotal to cellular processes such as viability, proliferation, and differentiation. Given its crucial function in B-cell development, PAX5 aberrant expression also correlates with hallmark cancer processes leading to hematological and other types of cancer lesions. Despite the well-established association of PAX5 in the development, maintenance, and progression of cancer disease, the use of PAX5 as a cancer biomarker or therapeutic target has yet to be implemented. This may be partly due to the assortment of PAX5 expressed products, which layers the complexity of their function and role in various regulatory networks and biological processes. In this review, we provide an overview of the reported data describing PAX5 products, their regulation, and function in cellular processes, cellular biology, and neoplasm.
Collapse
|
6
|
Beauregard AP, Hannay B, Gharib E, Crapoulet N, Finn N, Guerrette R, Ouellet A, Robichaud GA. Pax-5 Protein Expression Is Regulated by Transcriptional 3'UTR Editing. Cells 2021; 11:cells11010076. [PMID: 35011638 PMCID: PMC8750734 DOI: 10.3390/cells11010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Pax-5 gene encodes a transcription factor that is essential for B-cell commitment and maturation. However, Pax-5 deregulation is associated with various cancer lesions, notably hematopoietic cancers. Mechanistically, studies have characterized genetic alterations within the Pax-5 locus that result in either dominant oncogenic function or haploinsufficiency-inducing mutations leading to oncogenesis. Apart from these mutations, some examples of aberrant Pax-5 expression cannot be associated with genetic alterations. In the present study, we set out to elucidate potential alterations in post-transcriptional regulation of Pax-5 expression and establish that Pax-5 transcript editing represents an important means to aberrant expression. Upon the profiling of Pax-5 mRNA in leukemic cells, we found that the 3′end of the Pax-5 transcript is submitted to alternative polyadenylation (APA) and alternative splicing events. Using rapid amplification of cDNA ends (3′RACE) from polysomal fractions, we found that Pax-5 3′ untranslated region (UTR) shortening correlates with increased ribosomal occupancy for translation. These observations were also validated using reporter gene assays with truncated 3′UTR regions cloned downstream of a luciferase gene. We also showed that Pax-5 3′UTR editing has direct repercussions on regulatory elements such as miRNAs, which in turn impact Pax-5 protein expression. More importantly, we found that advanced staging of various hematopoietic cancer lesions relates to shorter Pax-5 3′UTRs. Altogether, our findings identify novel molecular mechanisms that account for aberrant expression and function of the Pax-5 oncogene in cancer cells. These findings also present new avenues for strategic intervention in Pax-5-mediated cancers.
Collapse
Affiliation(s)
- Annie-Pier Beauregard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Brandon Hannay
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Ehsan Gharib
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Nicolas Crapoulet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Dr. Georges-L-Dumont University Hospital Centre, Moncton, NB E1C 8X3, Canada;
| | - Nicholas Finn
- Dr. Georges-L-Dumont University Hospital Centre, Moncton, NB E1C 8X3, Canada;
| | - Roxann Guerrette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Amélie Ouellet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
- Correspondence: ; Tel.: +1-(506)-858-4320
| |
Collapse
|
7
|
Finney J, Kelsoe G. Continuous Culture of Mouse Primary B Lymphocytes by Forced Expression of Bach2. THE JOURNAL OF IMMUNOLOGY 2021; 207:1478-1492. [PMID: 34389622 DOI: 10.4049/jimmunol.2100172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Stable, long-term culture of primary B lymphocytes has many potential scientific and medical applications, but remains an elusive feat. A major obstacle to long-term culture is that in vitro mitogens quickly drive B cells to differentiate into short-lived plasma cells (PCs). PC differentiation is governed by opposing teams of transcription factors: Pax5, Bach2, and Bcl6 suppress PC commitment, whereas IFN regulatory factor 4 and Blimp1 promote it. To determine whether transcriptional programming could prolong B cell culture by blocking PC commitment, we generated mouse primary B cells harboring gain- or loss-of-function in the key transcription factors, continuously stimulated these cells with CD154 and IL-21, and determined growth potential and phenotypes in vitro. We found that transgenic expression of Bach2 prohibits PC commitment and endows B cells with extraordinary growth potential in response to external proliferation and survival cues. Long-term Bach2-transgenic B cell lines have genetically stable BCRs [i.e., do not acquire V(D)J mutations], express high levels of MHC class II and molecules for costimulation of T cells, and transduce intracellular signals when incubated with BCR ligands. Silencing the Bach2 transgene in an established transgenic cell line causes the cells to secrete large quantities of Ig. This system has potential applications in mAb production, BCR signaling studies, Ag presentation to T cells, and ex vivo clonal expansion for adoptive cell transfer. Additionally, our results provide insight into molecular control over activated B cell fate and suggest that forced Bach2 expression in vivo may augment germinal center B cell or memory B cell differentiation at the expense of PC commitment.
Collapse
Affiliation(s)
- Joel Finney
- Department of Immunology, Duke University, Durham, NC; and
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC; and .,Human Vaccine Institute, Duke University, Durham, NC
| |
Collapse
|
8
|
Nassar WAEFMI, Mohamed Yehia El Hennawy A, Mohamed Ahmed Gabal S, Salah El-Din Abd El-Magid M. Immunohistochemical study of PAX5 expression in lymphoid neoplasms. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ashshdgd
Collapse
|
9
|
Mitchell JL, Del Pozo J, Woolley CSC, Dheendsa R, Hope JC, Gunn-Moore DA. Histological and immunohistochemical features suggesting aetiological differences in lymph node and (muco)cutaneous feline tuberculosis lesions. J Small Anim Pract 2021; 63:174-187. [PMID: 34101189 DOI: 10.1111/jsap.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/20/2021] [Accepted: 05/16/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To identify and describe histological and immunohistochemical criteria that may differentiate between skin and lymph node lesions associated with Mycobacterium (M.) bovis and M. microti in a diagnostic pathology setting. MATERIALS AND METHODS Archived skin and lymph node biopsies of tuberculous lesions were stained with haematoxylin and eosin, Ziehl-Neelsen and Masson's Trichrome. Immunohistochemistry was performed to detect the expression of calprotectin, CD3 and Pax5. Samples were scored for histological parameters (i.e. granulomas with central necrosis versus small granulomas without central necrosis, percentage necrosis and/or multinucleated giant cells), number of acid-fast bacilli (bacterial index) and lesion percentage of fibrosis and positive immunohistochemical staining. RESULTS Twenty-two samples were examined (M. bovis n=11, M. microti n=11). When controlling for age, gender and tissue, feline M. bovis-associated lesions more often featured large multi-layered granulomas with central necrosis. Conversely, this presentation was infrequent in feline M. microti-associated lesions, where small granulomas without central necrosis predominated. The presence of an outer fibrous capsule was variable in both groups, as was the bacterial index. There were no differences in intralesional expression of immunohistochemical markers. CLINICAL SIGNIFICANCE Differences in the histological appearance of skin and lymph node lesions may help to infer feline infection with either M. bovis or M. microti at an earlier stage when investigating these cases, informing clinicians of the potential zoonotic risk. Importantly, cases of tuberculosis can present with numerous acid-fast bacilli. This implies that a high bacterial index does not infer infection with non-zoonotic non-tuberculous mycobacteria.
Collapse
Affiliation(s)
- J L Mitchell
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - J Del Pozo
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - C S C Woolley
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - R Dheendsa
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - J C Hope
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - D A Gunn-Moore
- *Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
10
|
Kurokawa A, Yamamoto Y. Immunohistochemical identification of T and B lymphocytes in formalin-fixed paraffin-embedded chicken tissues using commercial antibodies. Vet Immunol Immunopathol 2020; 228:110088. [PMID: 32688059 DOI: 10.1016/j.vetimm.2020.110088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Immunohistochemical method to detect avian lymphocytes is an efficient and reliable tool for accurate diagnosis, and immunological analysis of avian diseases. However, there are scarce studies reporting immunohistochemistry (IHC) using commercially available antibodies in formalin-fixed paraffin-embedded (FFPE) chicken tissues. In the present study, we established an immunohistochemical method to identify chicken T and B lymphocytes in FFPE chicken tissues using commercial antibodies against chicken or human antigens. For this IHC method, the five tested anti-T lymphocyte antibodies reacted with chicken T lymphocytes on the FFPE sections. Further, 10 commercial anti-B lymphocyte antibodies were tested; of these, three successfully detected chicken B lymphocytes for IHC. In particular, anti-human CD3 (clone F7.2.38) antibody was most suitable for the detection of chicken T lymphocytes, whereas anti-chicken B cell activating factor receptor (BAFF-R) antibody (clone 2C4) was most suitable for the detection of chicken B lymphocytes under our IHC staining conditions. These two antibodies reacted with numerous lymphocytes of all representative lymphoid tissues without problematic background staining and nonspecific reactions. Our results indicate that T and B lymphocytes in FFPE chicken tissues can be immunohistochemically detected using commercial antibodies.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
11
|
Tibaldi E, Gnudi F, Panzacchi S, Mandrioli D, Vornoli A, Manservigi M, Sgargi D, Falcioni L, Bua L, Belpoggi F. Identification of aspartame-induced haematopoietic and lymphoid tumours in rats after lifetime treatment. Acta Histochem 2020; 122:151548. [PMID: 32622430 DOI: 10.1016/j.acthis.2020.151548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Lymphomas and leukaemias involving the lung have in some cases been hard to distinguish from respiratory tract infection in Sprague-Dawley (SD) rats from long-term bioassays. In order to differentiate between tumours and immune cell infiltrates, updated pathological criteria and nomenclature were used and immunohistochemistry (IHC) was applied to haematopoietic and lymphoid tissue tumours (HLTs) in the original prenatal long-term Aspartame (APM) study performed by the Ramazzini Institute (RI). All 78 cases of HLTs from treated and control groups were re-examined based on light microscopic morphological characteristics and subjected to a panel of IHC markers including Ki67, CD3, PAX5, CD20, CD68, TdT, CD45, CD14 and CD33. The analysis confirmed the diagnoses of HLTs in 72 cases, identified 3 cases of preneoplastic lesions (lymphoid hyperplasia), and categorized 3 cases as inflammatory lesions. A statistically significant increase in total HLTs (p = 0.006), total lymphomas (p = 0.032) and total leukaemias (p = 0.031) in treated female rats was confirmed (high dose vs control), and a statistically significant linear trend for each HLT type was also observed. After the HLT cases re-evaluation, the results obtained are consistent with those reported in the previous RI publication and reinforce the hypothesis that APM has a leukaemogenic and lymphomatogenic effect.
Collapse
|
12
|
Scherger AK, Al-Maarri M, Maurer HC, Schick M, Maurer S, Öllinger R, Gonzalez-Menendez I, Martella M, Thaler M, Pechloff K, Steiger K, Sander S, Ruland J, Rad R, Quintanilla-Martinez L, Wunderlich FT, Rose-John S, Keller U. Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma. JCI Insight 2019; 4:128435. [PMID: 31391340 DOI: 10.1172/jci.insight.128435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aberrant activity of the glycoprotein 130 130/JAK/STAT3 (gp130/JAK/STAT3) signaling axis is a recurrent event in inflammation and cancer. In particular, it is associated with a wide range of hematological malignancies, including multiple myeloma and leukemia. Novel targeted therapies have only been successful for some subtypes of these malignancies, underlining the need for developing robust mouse models to better dissect the role of this pathway in specific tumorigenic processes. Here, we investigated the role of selective gp130/JAK/STAT3 activation by generating a conditional mouse model. This model targeted constitutively active, cell-autonomous gp130 activity to B cells, as well as to the entire hematopoietic system. We found that regardless of the timing of activation in B cells, constitutively active gp130 signaling resulted in the formation specifically of mature B cell lymphomas and plasma cell disorders with full penetrance, only with different latencies, where infiltrating CD138+ cells were a dominant feature in every tumor. Furthermore, constitutively active gp130 signaling in all adult hematopoietic cells also led to the development specifically of largely mature, aggressive B cell cancers, again with a high penetrance of CD138+ tumors. Importantly, gp130 activity abrogated the differentiation block induced by a B cell-targeted Myc transgene and resulted in a complete penetrance of the gp130-associated, CD138+, mature B cell lymphoma phenotype. Thus, gp130 signaling selectively provides a strong growth and differentiation advantage for mature B cells and directs lymphomagenesis specifically toward terminally differentiated B cell cancers.
Collapse
Affiliation(s)
- Anna K Scherger
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | | | - Markus Schick
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Sabine Maurer
- Internal Medicine III, Technische Universität München, Munich, Germany
| | - Rupert Öllinger
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | | | - Manuela Martella
- Institute of Pathology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Markus Thaler
- Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany
| | - Konstanze Pechloff
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, Technische Universität München, Munich, Germany
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Jürgen Ruland
- Center for Translational Cancer Research, and.,Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Rad
- Internal Medicine II.,Center for Translational Cancer Research, and.,Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | | | - Frank T Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Preventive Medicine and Diabetes, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ulrich Keller
- Internal Medicine III, Technische Universität München, Munich, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
13
|
Panzacchi S, Gnudi F, Mandrioli D, Montella R, Strollo V, Merrick BA, Belpoggi F, Tibaldi E. Effects of short and long-term alcohol-based fixation on Sprague-Dawley rat tissue morphology, protein and nucleic acid preservation. Acta Histochem 2019; 121:750-760. [PMID: 31277893 DOI: 10.1016/j.acthis.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Safety concerns on the toxic and carcinogenic effects of formalin exposure have drawn increasing attention to the search for alternative low risk fixatives for processing tissue specimens in laboratories worldwide. Alcohol-based fixatives are considered some of the most promising alternatives. We evaluated the performance of alcohol-fixed paraffin-embedded (AFPE) samples from Sprague-Dawley (SD) rats analyzing tissue morphology, protein and nucleic acid preservation after short and extremely long fixation times (up to 7 years), using formalin-fixed paraffin-embedded (FFPE) samples as a comparator fixative. Following short and long-term alcohol fixation, tissue morphology and cellular details in tissues, evaluated by scoring stained sections (Hematoxylin-Eosin and Mallory's trichrome), were optimally preserved if compared to formalin fixation. Immunoreactivity of proteins (Ki67, CD3, PAX5, CD68), evaluated by immunohistochemistry, showed satisfactory results when the fixation period did not exceed 1 year. Finally, we confirm the superiority of alcohol fixation compared to formalin, in terms of quantity of nucleic acid extracted from paraffin blocks, even after an extremely long time of alcohol fixation. Our results confirm that alcohol fixation is a suitable and safe alternative to formalin for pathological evaluations. There is a need for standardization of formalin-free methods and harmonization of diagnosis in pathology department worldwide.
Collapse
|
14
|
Wu L, Gao A, Kong L, Wu S, Yang Y, Bian X, Guo Z, Li Y, Li B, Pan X, Ye J. Molecular characterization and transcriptional expression of a B cell transcription factor Pax5 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 90:165-172. [PMID: 31039440 DOI: 10.1016/j.fsi.2019.04.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Pax5 (Paired Box 5), a nuclear transcription factor expressed in B cell specifically, is a key regulator for B cell activation. In this study, we cloned and identified a Pax5 gene (OnPax5) from Nile tilapia (Oreochromis niloticus), which has an open reading frame of 1278 bp, encoding deduced amino acid sequence of 425 residues. OnPax5 contains a conserved DNA-binding domain encoding the paired box, an octapeptide, a homeobox homology region, a transactivation and a repressor domain. OnPax5 is constitutively expressed in various analyzed tissues of tilapia, with a relatively high expression in lymphoid organs, including spleen (SPL), anterior kidney (AK), and thymus. What's more, OnPax5 is highly expressed in leukocytes especially in IgM+ lymphocytes sorted from peripheral blood (PBL), SPL and AK. When stimulated with lipopolysaccharide (LPS) in vivo, OnPax5 expression was significantly up-regulated in PBL, SPL and AK. Upon stimulation with LPS, pokeweed mitogen and mouse anti-OnIgM monoclonal antibody in vitro, the expression of OnPax5 was also significantly up-regulated in leukocytes from SPL and AK. Taken together, Pax5, the B cell lineage specific activator factor, might get involved in B cell activation in Nile tilapia.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Siwei Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Yuan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xunbin Pan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
15
|
Stein L, Bacmeister C, Ylaya K, Fetsch P, Wang Z, Hewitt SM, Kiupel M. Immunophenotypic Characterization of Canine Splenic Follicular-Derived B-Cell Lymphoma. Vet Pathol 2019; 56:350-357. [PMID: 30636524 DOI: 10.1177/0300985818823668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL) belong to a subgroup of indolent B-cell lymphomas most commonly reported in the canine spleen. The goal of this study was to characterize the immunophenotype of splenic MZL and MCL in comparison to their human counterparts. Ten MCLs and 28 MZLs were selected based on morphology. A tissue microarray was generated, and expression of CD3, CD5, CD10, CD45, CD20, CD79a, Pax-5, Bcl-2, Bcl-6, cyclin D1, cyclin D3, MCL-1, MUM-1, and Sox-11 was evaluated. Neoplastic cells in all MCLs and MZLs were positive for CD5, CD20, CD45, CD79a, and BCL2 and negative for CD3, CD10, Bcl-6, cyclin D1, and cyclin D3. Positive labeling for Pax-5 was detected in 8 of 10 MCLs and 26 of 28 MZLs. Positive labeling for MUM-1 was detected in 3 of 10 MCLs, and 27 of 28 MZLs were positive for MUM-1. No MCLs but 8 of 24 MZLs were positive for MCL-1. Canine splenic MZL and MCL have a similar immunophenotype as their human counterparts. However, human splenic MCL overexpresses cyclin D1 due to a translocation. A similar genetic alteration has not been reported in dogs. In addition, in contrast to human MZL, canine splenic MZL generally expresses CD5. Following identification of B vs T cells with CD20 and CD3, a panel composed of BCL-2, Bcl-6, MUM-1, and MCL-1 combined with the histomorphological pattern can be used to accurately diagnose MZL and MCL in dogs. Expression of Bcl-2 and lack of MCL-1 expression in MCL may suggest a therapeutic benefit of BCL-2 inhibitors in canine MCL.
Collapse
Affiliation(s)
- Leah Stein
- 1 Michigan State University Veterinary Diagnostic Laboratory and Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | | - Kris Ylaya
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zengfeng Wang
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- 3 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matti Kiupel
- 1 Michigan State University Veterinary Diagnostic Laboratory and Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Perez-Borrajero C, Okon M, McIntosh LP. Structural and Dynamics Studies of Pax5 Reveal Asymmetry in Stability and DNA Binding by the Paired Domain. J Mol Biol 2016; 428:2372-2391. [DOI: 10.1016/j.jmb.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
17
|
DE BRAEKELEER MARC, TOUS CORINE, GUÉGANIC NADIA, LE BRIS MARIEJOSÉE, BASINKO AUDREY, MOREL FRÉDÉRIC, DOUET-GUILBERT NATHALIE. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature. Mol Clin Oncol 2016; 4:682-694. [PMID: 27123263 PMCID: PMC4840758 DOI: 10.3892/mco.2016.793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive the optimal treatment.
Collapse
Affiliation(s)
- MARC DE BRAEKELEER
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - CORINE TOUS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NADIA GUÉGANIC
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
| | - MARIE-JOSÉE LE BRIS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - AUDREY BASINKO
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - FRÉDÉRIC MOREL
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NATHALIE DOUET-GUILBERT
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| |
Collapse
|
18
|
Abstract
The generation of antigen-specific neutralizing antibodies and memory B cells is one of the most important immune protections of the host and is the basis for successful vaccination strategies. The protective antibodies, secreted by preexisting long-lived plasma cells and reactivated antigen-experienced memory B cells, constitute the main humoral immune defense. Distinct from the primary antibody response, the humoral memory response is generated much faster and with greater magnitude, and it produces antibodies with higher affinity and variable isotypes. Humoral immunity is critically dependent on the germinal center where high-affinity memory B cells and plasma cells are generated. In this chapter, we focus on recent advances in our understanding of the molecular mechanisms that govern fate decision for memory B cells and plasma cells and the mechanisms that maintain the long-lived plasma-cell pool, with emphasis on how the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1) helps regulate the above-mentioned immunoregulatory steps to ensure the production and maintenance of antibody-secreting plasma cells as well as how it directs memory cell vs plasma-cell fate. We also discuss the molecular basis of Blimp-1 action and how its expression is regulated.
Collapse
|
19
|
Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, Li J, Li L, Li C, Peng W, Xu C, Wang Z, Hui T, Ren G, Tao Q, Xiang T. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med 2016; 20:842-54. [PMID: 26843424 PMCID: PMC4831360 DOI: 10.1111/jcmm.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that paired box 5 (PAX5) is down‐regulated in multiple tumours through its promoter methylation. However, the role of PAX5 in non‐small cell lung cancer (NSCLC) pathogenesis remains unclear. The aim of this study is to examine PAX5 expression, its methylation status, biological functions and related molecular mechanism in NSCLC. We found that PAX5 was widely expressed in normal adult tissues but silenced or down‐regulated in 88% (7/8) of NSCLC cell lines. PAX5 expression level was significantly lower in NSCLC than that in adjacent non‐cancerous tissues (P = 0.0201). PAX5 down‐regulation was closely associated with its promoter hypermethylation status and PAX5 expression could be restored by demethylation treatment. Frequent PAX5 promoter methylation in primary tumours (70%) was correlated with lung tumour histological types (P = 0.006). Ectopic expression of PAX5 in silenced lung cancer cell lines (A549 and H1975) inhibited their colony formation and cell viability, arrested cell cycle at G2 phase and suppressed cell migration/invasion as well as tumorigenicity in nude mice. Restoration of PAX5 expression resulted in the down‐regulation of β‐catenin and up‐regulation of tissue inhibitors of metalloproteinase 2, GADD45G in lung tumour cells. In summary, PAX5 was found to be an epigenetically inactivated tumour suppressor that inhibits NSCLC cell proliferation and metastasis, through down‐regulating the β‐catenin pathway and up‐regulating GADD45G expression.
Collapse
Affiliation(s)
- Lijuan Zhao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Gan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Li
- Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Matsuda Y, Haneda M, Kadomatsu K, Kobayashi T. A proliferation-inducing ligand sustains the proliferation of human naïve (CD27−) B cells and mediates their differentiation into long-lived plasma cells in vitro via transmembrane activator and calcium modulator and cyclophilin ligand interactor and B-cell mature antigen. Cell Immunol 2015; 295:127-36. [DOI: 10.1016/j.cellimm.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
|
21
|
Tierney RJ, Nagra J, Rowe M, Bell AI, Rickinson AB. The Epstein-Barr virus BamHI C promoter is not essential for B cell immortalization in vitro, but it greatly enhances B cell growth transformation. J Virol 2015; 89:2483-93. [PMID: 25540367 PMCID: PMC4325715 DOI: 10.1128/jvi.03300-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.
Collapse
Affiliation(s)
- Rosemary J Tierney
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jasdeep Nagra
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B Rickinson
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Variable Expression of B-cell Transcription Factors in Reactive Immunoblastic Proliferations. Am J Surg Pathol 2014; 38:1655-63. [DOI: 10.1097/pas.0000000000000266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Birshtein BK. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3' Regulatory Region. Front Immunol 2014; 5:163. [PMID: 24795714 PMCID: PMC4000994 DOI: 10.3389/fimmu.2014.00163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3′ of the Igh constant region genes. The ~40 kb 3′ RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3′ RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3′ RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3′ RR function by interacting with each other and with target sequences of the Igh locus.
Collapse
Affiliation(s)
- Barbara K Birshtein
- Department of Cell Biology, Albert Einstein College of Medicine , Bronx, NY , USA
| |
Collapse
|
25
|
Zhang D, Wang G, Wang Y. Transcriptional regulation prediction of antiestrogen resistance in breast cancer based on RNA polymerase II binding data. BMC Bioinformatics 2014; 15 Suppl 2:S10. [PMID: 24564526 PMCID: PMC4015922 DOI: 10.1186/1471-2105-15-s2-s10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although endocrine therapy impedes estrogen-ER signaling pathway and thus reduces breast cancer mortality, patients remain at continued risk of relapse after tamoxifen or other endocrine therapies. Understanding the mechanisms of endocrine resistance, particularly the role of transcriptional regulation is very important and necessary. Methods We propose a two-step workflow based on linear model to investigate the significant differences between MCF7 and OHT cells stimulated by 17β-estradiol (E2) respect to regulatory transcription factors (TFs) and their interactions. We additionally compared predicted regulatory TFs based on RNA polymerase II (PolII) binding quantity data and gene expression data, which were taken from MCF7/MCF7+E2 and OHT/OHT+E2 cell lines following the same analysis workflow. Enrichment analysis concerning diseases and cell functions and regulatory pattern analysis of different motifs of the same TF also were performed. Results The results showed PolII data could provide more information and predict more recognizably important regulatory TFs. Large differences in TF regulatory mode were found between two cell lines. Through verified through GO annotation, enrichment analysis and related literature regarding these TFs, we found some regulatory TFs such as AP-1, C/EBP, FoxA1, GATA1, Oct-1 and NF-κB, maintained OHT cells through molecular interactions or signaling pathways that were different from the surviving MCF7 cells. From TF regulatory interaction network, we identified E2F, E2F-1 and AP-2 as hub-TFs in MCF7 cells; whereas, in addition to E2F and E2F-1, we identified C/EBP and Oct-1 as hub-TFs in OHT cells. Notably, we found the regulatory patterns of different motifs of the same TF were very different from one another sometimes. Conclusions We inferred some regulatory TFs, such as AP-1 and NF-κB, cooperated with ER through both genomic action and non-genomic action. The TFs that were involved in both protein-protein interactions and signaling pathways could be one of the key resistant mechanisms of endocrine therapy and thus also could be new treatment targets for endocrine resistance. Our flexible workflow could be integrated into an existing analytical framework and guide biologists to further determine underlying mechanisms in human diseases.
Collapse
|
26
|
Otani K, Li X, Arakawa T, Chan FKL, Yu J. Epigenetic-mediated tumor suppressor genes as diagnostic or prognostic biomarkers in gastric cancer. Expert Rev Mol Diagn 2013; 13:445-55. [PMID: 23782252 DOI: 10.1586/erm.13.32] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gastric cancer is believed to result in part from the accumulation of multiple genetic and epigenetic alterations leading to oncogene overexpression and tumor suppressor loss. Tumor suppressor genes are inactivated more frequently by promoter methylation than by mutation in gastric cancer. Identification of genes inactivated by promoter methylation is a powerful approach to discover novel tumor suppressor genes. We have previously identified tumor suppressor genes in gastric cancer by genome-wide methylation screening. The biological functions of these genes are related to cell adhesion, ubiquitination, transcription, p53 regulation and diverse signaling pathways. Some of the tumor suppressor genes are of particular clinical importance as they can be used as predictive biomarkers for early diagnosis or ongoing prognosis of gastric cancer.
Collapse
Affiliation(s)
- Koji Otani
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li KaShing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | |
Collapse
|
27
|
Johnson RC, Ma L, Cherry AM, Arber DA, George TI. B-cell transcription factor expression and immunoglobulin gene rearrangement frequency in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol 2013; 140:355-62. [PMID: 23955454 DOI: 10.1309/ajcpfbcfxp94akwj] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To assess a large series of patients with acute myeloid leukemia (AML) with t(8;21) for both IGH@ and IGK@ B-cell gene rearrangements and for expression of PAX5, OCT2, and Bob.1 by immunohistochemistry and expression of CD19, CD79a, CD20, and CD22 by flow cytometry immunophenotyping. METHODS A total of 48 cases of AML with t(8;21)(q22;q22) were evaluated by immunohistochemistry and/or heavy chain and light chain immunoglobulin rearrangement studies where paraffin-embedded and/or fresh frozen material was available for study; previously performed flow cytometry studies were also reviewed in available cases. RESULTS Our study yielded 1 of 19 cases of AML with t(8;21) with an IGH@ gene rearrangement; blasts were associated with weak PAX5 expression. In addition, expression of antigens CD79a by flow cytometry and OCT2 by immunohistochemistry were highly associated with PAX5 expression, and CD19 was expressed in most cases assessed. CONCLUSIONS Although B-cell antigen and B-cell transcription factor expression is seen in the majority of AMLs with t(8;21)(q22;q22) and correlates with PAX5 expression, immunoglobulin gene rearrangements are an uncommon event in this group of leukemias.
Collapse
Affiliation(s)
- Ryan C. Johnson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Lisa Ma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Athena M. Cherry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Daniel A. Arber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Tracy I. George
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
28
|
Iliev DB, Thim H, Lagos L, Olsen R, Jørgensen JB. Homing of Antigen-Presenting Cells in Head Kidney and Spleen - Salmon Head Kidney Hosts Diverse APC Types. Front Immunol 2013; 4:137. [PMID: 23761795 PMCID: PMC3674399 DOI: 10.3389/fimmu.2013.00137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/22/2013] [Indexed: 01/07/2023] Open
Abstract
Lymph nodes and spleen are major organs where mammalian antigen-presenting cells (APCs) initiate and orchestrate Ag-specific immune responses. Unlike mammals, teleosts lack lymph nodes and an interesting question is whether alternative organs may serve as sites for antigen presentation in teleosts. In the current study, fluorescent ovalbumin (Ova) and CpG oligonucleotides (ODNs) injected intra-abdominally were detected in significant numbers of salmon head kidney (HK) MHCII+ cells over a period of 2 weeks while in spleen the percentage of these was transient and declined from day 1 post injection. In vitro studies further shed light on the properties of the diverse MHCII+ cell types found in HK. The ultrastructure of a subpopulation of MHCII+ cells with a high capacity to endocytose and process Ova indicated that these were able to perform constitutive macropinocytosis. Upon stimulation with CpG ODNs these cells upregulated CD86 and gave very high levels of TNF mRNA indicating that these are professional APCs, related to macrophages and dendritic cells (DCs). A subpopulation of HK granulocytes expressed high levels of surface MHCII and upon CpG stimulation upregulated most of the tested APC marker genes. Although these granulocytes expressed TNF weakly, they had relatively high basal levels of IL-1β mRNA and the CpG stimulation upregulated IL-1β, along with its signaling and decoy receptors, to the highest levels as compared to other HK cell types. Interestingly, the high expression of IL-1β mRNA in the granulocytes correlated with a high autophagy flux as demonstrated by LC3-II conversion. Autophagy has recently been found to be implicated in IL-1β processing and secretion and the presented data suggests that granulocytes of salmon, and perhaps other teleost species, may serve as a valuable model to study the involvement of autophagy in regulation of the vertebrate immune response.
Collapse
Affiliation(s)
- Dimitar B Iliev
- Norwegian College of Fisheries Science, University of Tromsø , Tromsø , Norway
| | | | | | | | | |
Collapse
|
29
|
Roberts MJ, Chadburn A, Ma S, Hyjek E, Peterson LC. Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia. Am J Clin Pathol 2013; 139:210-9. [PMID: 23355206 DOI: 10.1309/ajcp0ygm8blfyhjy] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is characterized by monoclonal gammopathy, usually IgM, in association with lymphoplasmacytic lymphoma (LPL). Little is known of the expression of nuclear proteins involved in B-cell development in LPL/WM. In this study, the expression patterns of PAX5/BSAP, MUM1/IRF4, and PRDM1/BLIMP1 were analyzed in plasma cells and lymphocytes in 29 cases of newly diagnosed LPL/WM by double immunohistochemical staining with CD138 and CD22. These patterns were compared with the expression profiles seen in normal bone marrow samples, reactive tonsils, and cases of plasma cell myeloma and marginal zone lymphoma. The median percentage of plasma cells coexpressing CD138 and PAX5 was significantly higher in LPL/WM compared with benign tissues (P = .001), marginal zone lymphoma (P = .002), and plasma cell myeloma (P < .0001), whereas the median percentage of plasma cells coexpressing CD138 and MUM1 was lower in LPL/WM than plasma cells in benign tissues (P = .02), marginal zone lymphoma (P = .001), and plasma cell myeloma (P = .0002). These findings show that a subset of plasma cells in LPL/WM demonstrates a nuclear protein expression pattern characteristic of the B-cell developmental program. Thus, the results better define the immunophenotypic profile of the neoplastic cells in LPL/WM.
Collapse
Affiliation(s)
- Mark J. Roberts
- Department of Pathology, Northwestern University–Feinberg School of Medicine, Chicago, IL
| | - Amy Chadburn
- Department of Pathology, Northwestern University–Feinberg School of Medicine, Chicago, IL
| | - Shuo Ma
- Department of Internal Medicine, Northwestern University–Feinberg School of Medicine, Chicago, IL
| | | | - LoAnn C. Peterson
- Department of Pathology, Northwestern University–Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
30
|
Zhang Q, Kline DE, Bhattacharya S, Crawford RB, Conolly RB, Thomas RS, Andersen ME, Kaminski NE. All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 2013; 268:17-26. [PMID: 23357550 DOI: 10.1016/j.taap.2013.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Many environmental contaminants can disrupt the adaptive immune response. Exposure to the ubiquitous aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other agonists suppresses the antibody response. The underlying pathway mechanism by which TCDD alters B cell function is not well understood. The present study investigated the mechanism of AhR-mediated pathways and mode of suppression by which TCDD perturbs terminal differentiation of B cells to plasma cells and thereby impairs antibody production. An integrated approach combining computational pathway modeling and in vitro assays with primary mouse B cells activated by lipopolysaccharide was employed. We demonstrated that suppression of the IgM response by TCDD occurs in an all-or-none (binary) rather than graded mode: i.e., it reduces the number of IgM-secreting cells in a concentration-dependent manner without affecting the IgM content in individual plasma cells. The mathematical model of the gene regulatory circuit underpinning B cell differentiation revealed that two previously identified AhR-regulated pathways, inhibition of signaling protein AP-1 and activation of transcription factor Bach2, could account for the all-or-none mode of suppression. Both pathways disrupt the operation of a bistable-switch circuit that contains transcription factors Bcl6, Prdm1, Pax5, and Bach2 and regulates B cell fate. The model further predicted that by transcriptionally activating Bach2, TCDD might delay B cell differentiation and increase the likelihood of isotype switching, thereby altering the antibody repertoire. In conclusion, the present study revealed the mode and specific pathway mechanisms by which the environmental immunosuppressant TCDD suppresses B cell differentiation.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Morgan EA, Pozdnyakova O, Nascimento AF, Hirsch MS. PAX8 and PAX5 are differentially expressed in B-cell and T-cell lymphomas. Histopathology 2012; 62:406-13. [PMID: 23163626 DOI: 10.1111/his.12020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The purpose of this study was to evaluate the expression patterns of B-cell specific activator protein (BSAP)/PAX5 and PAX8 in a wide variety of B-cell and T-cell neoplasms. METHODS AND RESULTS A wide range of B-cell and T-cell neoplasms were subjected to immunohistochemical staining with antibodies against BSAP/PAX5 and PAX8 (polyclonal, pPAX8; monoclonal, mPAX8). Ten non-neoplastic lymph node specimens were examined with the same panel. All of the tested neoplastic and non-neoplastic B-cells reacted with the BSAP/PAX5 and pPAX8 antibodies, but did not show reactivity with the mPAX8 antibody. All tested T-cell neoplasms were negative using the BSAP/PAX5, pPAX8 and mPAX8 antibodies. CONCLUSIONS This is the first study to show the absence of reactivity to an mPAX8 antibody in an expanded panel of B-cell lymphomas as well as in a variety of T-cell neoplasms. In contrast to the mPAX8 antibody, the pPAX8 antibody shows nuclear positivity in non-neoplastic B cells and mature B-cell neoplasms; however, this expression is probably a result of cross-reactivity with PAX5. Given that many laboratories use the pPAX8 antibody, a clear understanding of the differential staining patterns is necessary. The differential diagnosis of a B-cell lymphoma should be entertained when a pPAX8-positive, epithelial marker-negative neoplasm of uncertain primary origin is encountered.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
32
|
Rehg JE, Bush D, Ward JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol 2012; 40:345-74. [PMID: 22434870 DOI: 10.1177/0192623311430695] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Expression of antigens in cells and tissues can be readily studied immunohistochemically with the use of antibodies. A panel of antibodies to cell-specific markers can be used to diagnose lesions, including tumors, in the hematopoietic and lymphoid systems. This review discusses the use of readily available antibodies and procedures to identify antigens expressed in normal tissues and in proliferative and inflammatory lesions in formalin-fixed, paraffin-embedded (FFPE) murine specimens.
Collapse
Affiliation(s)
- Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | |
Collapse
|
33
|
Taubenheim N, Tarlinton DM, Crawford S, Corcoran LM, Hodgkin PD, Nutt SL. High Rate of Antibody Secretion Is not Integral to Plasma Cell Differentiation as Revealed by XBP-1 Deficiency. THE JOURNAL OF IMMUNOLOGY 2012; 189:3328-38. [DOI: 10.4049/jimmunol.1201042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Fernando TM, Ochs SD, Liu J, Chambers-Turner RC, Sulentic CEW. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces transcriptional activity of the human polymorphic hs1,2 enhancer of the 3'Igh regulatory region. THE JOURNAL OF IMMUNOLOGY 2012; 188:3294-306. [PMID: 22357631 DOI: 10.4049/jimmunol.1101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxicant known to inhibit Ab secretion and Ig expression. Inhibition of Ig expression may be partially mediated through repression of the 3'Igh regulatory region (3'IghRR). TCDD inhibits mouse 3'IghRR activation and induces aryl hydrocarbon receptor binding to dioxin response elements within the 3'IghRR enhancers hs1,2 and hs4. The human hs1,2 enhancer (hu-hs1,2) is polymorphic as the result of the presence of one to four invariant sequences (ISs), which have been correlated with several autoimmune diseases. The IS also contains a dioxin response element core motif. Therefore, the objective was to determine whether hu-hs1,2 activity is sensitive to TCDD. Using a mouse B cell line (CH12.LX), we compared the effects of TCDD on mouse hs1,2 versus hu-hs1,2 activity. TCDD inhibited mouse hs1,2 similarly to the mouse 3'IghRR. In contrast, hu-hs1,2 was activated by TCDD, and antagonist studies supported an aryl hydrocarbon receptor-dependent activation, which was replicated in a human B cell line (IM-9). Absence of Pax5 binding sites is a major difference between the human and mouse hs1,2 sequence. Insertion of the high-affinity Pax5 site in hu-hs1,2 markedly blunted reporter activity but did not alter TCDD's effect (i.e., no shift from activation to inhibition). Additionally, deletional analysis demonstrated a significant IS contribution to hu-hs1,2 basal activity, but TCDD-induced activity was not strictly IS number dependent. Taken together, our results suggest that hu-hs1,2 is a significant target of TCDD and support species differences in hs1,2 regulation. Therefore, sensitivity of hu-hs1,2 to chemical-induced modulation may influence the occurrence and/or severity of human diseases associated with hu-hs1,2.
Collapse
Affiliation(s)
- Tharu M Fernando
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
35
|
Firtina S, Sayitoglu M, Hatirnaz O, Erbilgin Y, Oztunc C, Cinar S, Yildiz I, Celkan T, Anak S, Unuvar A, Devecioglu O, Timur C, Aydogan G, Akcay A, Atay D, Turkkan E, Karaman S, Orhaner B, Sarper N, Deniz G, Ozbek U. Evaluation of PAX5 gene in the early stages of leukemic B cells in the childhood B cell acute lymphoblastic leukemia. Leuk Res 2012; 36:87-92. [DOI: 10.1016/j.leukres.2011.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 07/10/2011] [Indexed: 01/17/2023]
|
36
|
Li X, Cheung KF, Ma X, Tian L, Zhao J, Go MYY, Shen B, Cheng ASL, Ying J, Tao Q, Sung JJY, Kung HF, Yu J. Epigenetic inactivation of paired box gene 5, a novel tumor suppressor gene, through direct upregulation of p53 is associated with prognosis in gastric cancer patients. Oncogene 2011; 31:3419-30. [PMID: 22105368 DOI: 10.1038/onc.2011.511] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using genome-wide methylation screening, we identified that paired box gene 5 (PAX5) is involved in human cancer development. However, the function of PAX5 in gastric cancer (GC) development is largely unclear. We analyzed its epigenetic inactivation, biological functions and clinical application in GC. PAX5 was silenced in seven out of eight GC cell lines. A significant downregulation was also detected in paired gastric tumors compared with adjacent non-cancerous tissues. The downregulation of PAX5 was closely linked to the promoter hypermethylation status and could be restored with demethylation treatment. Ectopic expression of PAX5 in silenced GC cell lines (AGS and BGC823) inhibited colony formation and cell viability, arrested cell cycle, induced apoptosis, suppressed cell migration and invasion and repressed tumorigenicity in nude mice. Consistent with the induction of apoptosis by PAX5 in vitro, terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) staining showed significantly enhanced apoptotic cells in PAX5-expressed tumors compared with the vector control tumors. On the other hand, knockdown of PAX5 by PAX5-short hairpin RNA increased the cell viability and proliferation. The anti-tumorigenic function of PAX5 was revealed to be mediated by upregulating downstream targets of tumor protein 53 (p53), p21, BCL2-associated X protein, metastasis suppressor 1 and tissue inhibitors of metalloproteinase 1, and downregulating BCL2, cyclin D1, mesenchymal-epithelial transition factor (MET) and matrix metalloproteinase 1. Immunoprecipitation assay demonstrated that PAX5 directly bound to the promoters of p53 and MET. Moreover, PAX5 hypermethylation was detected in 77% (144 of 187) of primary GCs compared with 10.5% (2/19) of normal gastric tissues (P<0.0001). GC patients with PAX5 methylation had a significant poor survival compared with the unmethylated cases as demonstrated by Cox regression model and log-rank test. In conclusion, PAX5 is a novel functional tumor suppressor in gastric carcinogenesis. Detection of methylated PAX5 can be utilized as an independent prognostic factor in GC.
Collapse
Affiliation(s)
- X Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Toll-like receptor agonists synergize with CD40L to induce either proliferation or plasma cell differentiation of mouse B cells. PLoS One 2011; 6:e25542. [PMID: 21991317 PMCID: PMC3184999 DOI: 10.1371/journal.pone.0025542] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/05/2011] [Indexed: 01/08/2023] Open
Abstract
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.
Collapse
|
38
|
Dougherty MJ, Wilmoth DM, Tooke LS, Shaikh TH, Gai X, Hakonarson H, Biegel JA. Implementation of high resolution single nucleotide polymorphism array analysis as a clinical test for patients with hematologic malignancies. Cancer Genet 2011; 204:26-38. [PMID: 21356189 DOI: 10.1016/j.cancergencyto.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Single nucleotide polymorphism-based oligonucleotide arrays have been used as a research tool to detect genomic copy number changes and allelic imbalance in a variety of hematologic malignancies and solid tumors. The high resolution, genome-wide coverage, minimal DNA requirements, and relatively short turnaround time are advantageous for use in a clinical setting. We validated the Illumina HumanHap550 BeadChip array for clinical use by analyzing 127 pediatric leukemia and lymphoma samples that had previously been characterized by means of standard cytogenetic analysis and fluorescence in situ hybridization. A higher resolution Illumina HumanHap610 BeadChip array was ultimately used for clinical testing. To date, 180 samples from children with a suspected or confirmed hematologic malignancy have been analyzed. Of the 180 clinical samples, 130 (72%) bone marrow or lymphoma specimens had aberrations revealed by the array that were not seen in the karyotypes. These typically included deletions in genes associated with B- or T-cell malignancies, such as CDKN2A/B, PAX5, and IKZF1. There were also 75 regions of copy number neutral loss of heterozygosity (>5 Mb threshold) detected in 49 samples in this cohort, which could be categorized as constitutional or acquired abnormalities. On the basis of our experience in the last 2 years, we suggest that single nucleotide polymorphism arrays are a valuable addition to, but not a replacement for, standard cytogenetic approaches for hematologic malignancies.
Collapse
Affiliation(s)
- Margaret J Dougherty
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Odaka T, Tsutsui S, Sugamata R, Suetake H, Miyadai T, Suzuki Y, Watanabe T, Nakamura O. The plasmablast-like leukocyte in the kidney of fugu (Takifugu rubripes). FISH & SHELLFISH IMMUNOLOGY 2011; 30:682-690. [PMID: 21216292 DOI: 10.1016/j.fsi.2010.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 12/09/2010] [Accepted: 12/24/2010] [Indexed: 05/30/2023]
Abstract
In teleosts, the kidney is the major immune organ. From the kidney of fugu (Takifugu rubripes), we isolated a unique leukocyte population. This population shows properties similar to those of mammalian plasmablasts. First, adherent cells expressing IgM protein on their surface were obtained from the fugu kidney. Flow cytometry (FCM) showed that these cells were mainly composed of two cell populations: IgM+CD8α⁻ cells and IgM+CD8α+ cells. Further characterization of the IgM+CD8α⁻ population by RT-PCR demonstrated that the cells expressed secretory-type IgM as well as Bcl-6 and Blimp-1, developmental marker genes for the B cell lineage. Western blotting also showed that the cells secreted IgM protein. These results indicate that the IgM+CD8α⁻ cells are similar to cells at the plasmablast stage in mammals. This is the first report isolating plasmablast-like leukocytes in fish species. Our data also suggests that the teleosts kidney is a organ where B cells terminally differentiate into the plasma cells.
Collapse
Affiliation(s)
- Tomoyuki Odaka
- School of Marine Biosciences, Kitasato University, Sanriku, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fujita T, Fujii H. Species-specific 5'-genomic structure and multiple transcription start sites in the chicken Pax5 gene. Gene 2011; 477:24-31. [PMID: 21241785 DOI: 10.1016/j.gene.2011.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/09/2011] [Indexed: 12/22/2022]
Abstract
Master differentiation transcription factors (MDFs) play decisive roles in cell lineage commitment. Paired box 5 (Pax5) is one of MDFs essential for differentiation of pre-B cells into mature B cells. Here, we analyzed the 5'-genomic structure and transcription of the chicken Pax5 (cPax5) gene in the chicken mature B cell line, DT40. We showed that the cPax5 gene has two first exons: exon 1A contains long AG repeats, while exon 1B has high GC contents. The exons 1A and 1B had one and three major transcription start sites, respectively. Semi-quantitative RT-PCR revealed that comparable amounts of mRNA are transcribed from the exons 1A and 1B. Interestingly, the transcription start site of the cPax5 exon 1A was chicken-specific. In addition, the cPax5 promoter upstream of the exon 1A had no homology with the human and mouse Pax5 promoters. Thus, the mechanisms regulating transcription of the Pax5 exon 1A might not be conserved among species. Furthermore, we determined the physical structure of the exons 1A, 1B, and 2 in the genome of DT40 cells. Our results will be useful for elucidating mechanisms that control cPax5 transcription and B cell lineage commitment, which is conserved or not conserved among different species.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
| | | |
Collapse
|
41
|
Rajčáni J, Asványi-Molnár N, Szathmary S. Herpesvirus-associated lymphomas: Investigations in humans and animal models. Acta Microbiol Immunol Hung 2010; 57:349-76. [PMID: 21183422 DOI: 10.1556/amicr.57.2010.4.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphomas are solid tumors consisting of lymphoid cells; they form a heterogeneous group of less or more malignant disorders. A portion of lymphomas develop due to latent herpesvirus infections established in B and/or T-lymphocytes. The basis for latency is a lifelong presence of the circularized covalently linked viral genome within nuclei of carrier lymphocytes. In certain cases, however, the essential event leading to tumor formation is the integration of a portion(s) of viral DNA into the host cell DNA. This leads to rearrangements within the host cell genome on one hand, and, on other hand, to unregulated expression of oncoproteins encoded by the integrated fragment. Our review deals with mechanisms of lymphoma formation regarding to the role of non-structural herpesvirus oncoproteins interfering with the regulation of cell division and/or exerting anti-apoptotic effects. In addition, the authors wish to highlight the common procedures, which allowed isolation and/or identification of lymphoma-associated viruses in cell cultures derived from tumors and/or proliferating lymphatic tissues.
Collapse
Affiliation(s)
- J Rajčáni
- Institute of Virology, Slovak Academy of Sciences, Institute of Virology, 84505 Bratislava, Slovak Republic, Hungary.
| | | | | |
Collapse
|
42
|
Sulentic CEW, Kaminski NE. The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 120 Suppl 1:S171-91. [PMID: 20952503 DOI: 10.1093/toxsci/kfq324] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was first reported in the mid-1970s. Since this initial observation, much effort has been devoted by many laboratories toward elucidation of the cellular and molecular mechanisms responsible for the profound impairment of humoral immune responses by TCDD, which is characterized by decreased B cell to plasma cell differentiation and suppression of immunoglobulin production. These efforts have led to a significant body of research demonstrating a direct effect of TCDD on B-cell maturation and function as well as a requisite but as yet undefined role of the aryl hydrocarbon receptor (AhR) in these effects. Likewise, a number of molecular targets putatively involved in mediating B-cell dysfunction by TCDD, and other AhR ligands, have been identified. However, our current understanding has primarily relied on findings from mouse models, and the translation of this knowledge to effects on human B cells and humoral immunity in humans is less clear. Therefore, a current challenge is to determine how TCDD and the AhR affect human B cells. Efforts have been made in this direction but continued progress in developing adequate human models is needed. An in-depth discussion of these advances and limitations in elucidating the cellular and molecular mechanisms putatively involved in the suppression of B-cell function by TCDD as well as the implications on human diseases associated in epidemiological studies with exposure to TCDD and dioxin-like compounds is the primary focus of this review.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
43
|
Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int J Hematol 2010; 92:451-62. [PMID: 20882442 DOI: 10.1007/s12185-010-0691-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 12/22/2022]
Abstract
PAX5 is an essential transcription factor for the commitment of lymphoid progenitors to the B-lymphocyte lineage. PAX5 suppression results in retrodifferentiation of B lymphocytes to an uncommitted progenitor cell stage, whereas PAX5 suppression in mature B lymphocytes leads to further development into plasma cells. Here, we have analyzed the fate of plasma cell lines following PAX5 reexpression. Human B cell lines were infected with Ad5/F35 adenoviruses encoding either EYFP or PAX5. Expression analysis of specific plasma cell transcription factors (IRF4, Blimp-1 and XBP-1) suggests that PAX5 reexpression does not induce retrodifferentiation of plasma cells into B lymphocytes. Interestingly, the viability of RPMI-8226 and U266 multiple myeloma cell lines markedly declined at 4-7 days post-transduction, whereas other plasma cell lines maintained their viability. Apoptosis analysis through Annexin V measurement also revealed a higher level of apoptosis in PAX5-expressing myeloma cell lines. Finally, Western blot analysis of pro- and anti-apoptotic proteins revealed that the anti-apoptotic protein MCL-1 was down-modulated in PAX5-transduced multiple myeloma cell lines. In conclusion, our results show that the expression of PAX5 in plasma cell lines induces apoptosis exclusively in multiple myelomas. This might represent a potential therapeutic avenue in the treatment of multiple myeloma.
Collapse
|
44
|
Vidal LJP, Perry JK, Vouyovitch CM, Pandey V, Brunet-Dunand SE, Mertani HC, Liu DX, Lobie PE. PAX5α Enhances the Epithelial Behavior of Human Mammary Carcinoma Cells. Mol Cancer Res 2010; 8:444-56. [DOI: 10.1158/1541-7786.mcr-09-0368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Bougel S, Renaud S, Braunschweig R, Loukinov D, Morse HC, Bosman FT, Lobanenkov V, Benhattar J. PAX5 activates the transcription of the human telomerase reverse transcriptase gene in B cells. J Pathol 2010; 220:87-96. [PMID: 19806612 PMCID: PMC3422366 DOI: 10.1002/path.2620] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/26/2009] [Indexed: 11/07/2022]
Abstract
Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.
Collapse
Affiliation(s)
- Stéphanie Bougel
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Stéphanie Renaud
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD 20852, USA
| | - Richard Braunschweig
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Dmitri Loukinov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD 20852, USA
| | - Herbert C Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD 20852, USA
| | - Fred T. Bosman
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Victor Lobanenkov
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD 20852, USA
| | - Jean Benhattar
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
46
|
Zangrando A, Dell'orto MC, Te Kronnie G, Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genomics 2009; 2:36. [PMID: 19549311 PMCID: PMC2709660 DOI: 10.1186/1755-8794-2-36] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background The presence of MLL rearrangements in acute leukemia results in a complex number of biological modifications that still remain largely unexplained. Armstrong et al. proposed MLL rearrangement positive ALL as a distinct subgroup, separated from acute lymphoblastic (ALL) and myeloblastic leukemia (AML), with a specific gene expression profile. Here we show that MLL, from both ALL and AML origin, share a signature identified by a small set of genes suggesting a common genetic disregulation that could be at the basis of mixed lineage leukemia in both phenotypes. Methods Using Affymetrix® HG-U133 Plus 2.0 platform, gene expression data from 140 (training set) + 78 (test set) ALL and AML patients with (24+13) and without (116+65) MLL rearrangements have been investigated performing class comparison (SAM) and class prediction (PAM) analyses. Results We identified a MLL translocation-specific (379 probes) signature and a phenotype-specific (622 probes) signature which have been tested using unsupervised methods. A final subset of 14 genes grants the characterization of acute leukemia patients with and without MLL rearrangements. Conclusion Our study demonstrated that a small subset of genes identifies MLL-specific rearrangements and clearly separates acute leukemia samples according to lineage origin. The subset included well-known genes and newly discovered markers that identified ALL and AML subgroups, with and without MLL rearrangements.
Collapse
Affiliation(s)
- Andrea Zangrando
- Laboratory of HematoOncology, Department of Pediatrics "Salus Pueri", University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
47
|
Willmann M, Müllauer L, Guija de Arespacochaga A, Reifinger M, Mosberger I, Thalhammer JG. Pax5 immunostaining in paraffin-embedded sections of canine non-Hodgkin lymphoma: a novel canine pan pre-B- and B-cell marker. Vet Immunol Immunopathol 2008; 128:359-65. [PMID: 19100628 DOI: 10.1016/j.vetimm.2008.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/19/2008] [Accepted: 11/06/2008] [Indexed: 11/26/2022]
Abstract
The Pax5 gene encodes the B-cell specific activator protein (BSAP), a member of the highly conserved paired box (PAX)-domain family of transcription factors and a key regulator in the development and differentiation of B-cells. Pax5 serves as a valuable B-cell marker in the classification of human lymphoma patients as it is restricted to lymphomas of B-cell lineage. In dogs, detection of Pax5 protein in lymphoma tissue has not been reported. Therefore, we have investigated the expression and detection of BSAP using a monoclonal anti-Pax5 antibody (anti-BSAP, clone 24) in canine lymphoma tissue samples to evaluate its diagnostic relevance as a B-cell marker. A series of 25 lymph nodes from 23 canine non-Hodgkin lymphoma patients, a reactive canine lymph node, and a normal non-reactive canine lymph node, were evaluated. All B-cell non-Hodgkin lymphomas (15) were found to express Pax5 protein. In addition, there was a strong correlation between Pax5 and CD79a expression. Three CD3 positive and five CD3 and CD79a positive lymphomas were immunophenotypically negative for anti-Pax5, indicating a T-cell lineage. In conclusion, anti-Pax5 antibody may offer an excellent B-cell marker in canine lymphomas.
Collapse
Affiliation(s)
- M Willmann
- Department for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
48
|
Robichaud GA, Perreault JP, Ouellette RJ. Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element. Nucleic Acids Res 2008; 36:4609-20. [PMID: 18617575 PMCID: PMC2504290 DOI: 10.1093/nar/gkn432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax-5, is vital during B lymphocyte differentiation and is known to contribute to the oncogenesis of certain cancers. The Pax-5 locus generates multiple yet structurally related mRNA transcripts through the specific activation of alternative promoter regions and/or alternative splicing events which poses challenges in the study of specific isoform function. In this study, we investigated the function of a major Pax-5 transcript, Pax-5B using an enhanced version of the Hepatitis Delta Virus ribozyme (HDV Rz) suppression system that is specifically designed to recognize and cleave the human Pax-5B mRNA. The activity of these ribozymes resulted in the specific suppression of the Pax-5B transcripts without altering the transcript levels of other closely related Pax-5 isoforms mRNAs both in vitro and in an intracellular setting. Following stable transfection of the ribozymes into a model B cell line (REH), we showed that Pax-5B suppression led to an increase of CD19 mRNA and cell surface protein expression. In response to this Pax-5B specific deregulation, a marked increase in apoptotic activity compared to control cell lines was observed. These results suggest that Pax-5B has distinct roles in physiological processes in cell fate events during lymphocyte development.
Collapse
Affiliation(s)
- Gilles A Robichaud
- Département de biochimie, RNA Group/Groupe ARN, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | |
Collapse
|
49
|
Bowen AJ, Corcoran AE. How chromatin remodelling allows shuffling of immunoglobulin heavy chain genes. MOLECULAR BIOSYSTEMS 2008; 4:790-8. [PMID: 18633479 DOI: 10.1039/b719771n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.
Collapse
Affiliation(s)
- Adam J Bowen
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
50
|
Higgins RA, Blankenship JE, Kinney MC. Application of Immunohistochemistry in the Diagnosis of Non-Hodgkin and Hodgkin Lymphoma. Arch Pathol Lab Med 2008; 132:441-61. [DOI: 10.5858/2008-132-441-aoiitd] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2007] [Indexed: 11/06/2022]
Abstract
AbstractContext.—Beginning with the immunologic classifications of Lukes and Collins and Kiel and culminating in the Revised European-American Lymphoma and World Health Organization classifications, the diagnosis of lymphoid tumors relies heavily on the determination of cell lineage, maturation, and function, based on antigen expression in addition to morphology and clinical features. Technologic advances in immunology, antibody production, genetic analysis, cloning, and the identification of new genes and proteins by microarray and proteomics have provided pathologists with many antibodies to use in routine diagnosis.Objective.—To provide guidance to the practicing pathologist in the appropriate selection of an antibody panel for the diagnosis of lymphoma based on morphology and relevant clinical data and to avoid pitfalls in the interpretation of immunohistochemical data. Attention is given to some of the newer antibodies, particularly against transcription factors, that are diagnostically and prognostically useful.Data Sources.—The information presented in this article is based on review of the literature using the OVID database (Ovid MEDLINE 1950 to present with daily update) and 20 years of experience in diagnostic hematopathology.Conclusions.—Immunophenotyping is required for the diagnosis and classification of lymphoid malignancies. Many paraffin-reactive antibodies are available to the pathologist but most are not specific. To avoid diagnostic pitfalls, interpretation of marker studies must be based on a panel and knowledge of a particular antigen's expression in normal, reactive, and neoplastic conditions.
Collapse
Affiliation(s)
- Russell A. Higgins
- From the Department of Pathology, The University of Texas Health Science Center at San Antonio
| | - Jennifer E. Blankenship
- From the Department of Pathology, The University of Texas Health Science Center at San Antonio
| | - Marsha C. Kinney
- From the Department of Pathology, The University of Texas Health Science Center at San Antonio
| |
Collapse
|