1
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
2
|
Long H, Johri P, Gout JF, Ni J, Hao Y, Licknack T, Wang Y, Pan J, Jiménez-Marín B, Lynch M. Paramecium Genetics, Genomics, and Evolution. Annu Rev Genet 2023; 57:391-410. [PMID: 38012024 PMCID: PMC11334263 DOI: 10.1146/annurev-genet-071819-104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.
Collapse
Affiliation(s)
- Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Timothy Licknack
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Berenice Jiménez-Marín
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
3
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
4
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
5
|
Catania F, Rothering R, Vitali V. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium. Genome Biol Evol 2021; 13:6443145. [PMID: 34849843 PMCID: PMC8670300 DOI: 10.1093/gbe/evab263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia’s elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany.,Institute of Environmental Radioactivity, Fukushima University, Japan
| | - Rebecca Rothering
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, Germany
| |
Collapse
|
6
|
Hagen R, Vitali V, Catania F. Cross-Generational Effects and Non-random Developmental Response to Temperature Variation in Paramecium. Front Cell Dev Biol 2020; 8:584219. [PMID: 33195230 PMCID: PMC7606892 DOI: 10.3389/fcell.2020.584219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unicellular organisms such as ciliates are largely neglected in research on adaptive developmental plasticity, although their nuclear dualism offers ideal circumstances to study development outside an embryonic context. Here, we gain first insights into the ability of the ciliate Paramecium to develop potentially adaptive phenotypic changes in response to early-life adversity. We show that, upon exposure to unconventional culture temperatures, germ line-to-soma differentiation gives rise to coordinated molecular changes that may help attune the number of functional gene copies to the new external conditions. The non-random somatic heterogeneity that developmental plasticity generates is largely epigenetically controlled, shaped by the parental experience, and may prompt a stress response. These findings establish Paramecium as a new model system to study the molecular basis and evolutionary significance of developmental plasticity. In echoing previous indications in mammals, they call for an incorporation of intergenerational effects in adaptation studies.
Collapse
Affiliation(s)
- Rebecca Hagen
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Valerio Vitali
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Francesco Catania
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Vitali V, Hagen R, Catania F. Environmentally induced plasticity of programmed DNA elimination boosts somatic variability in Paramecium tetraurelia. Genome Res 2019; 29:1693-1704. [PMID: 31548355 PMCID: PMC6771405 DOI: 10.1101/gr.245332.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Can ecological changes impact somatic genome development? Efforts to resolve this question could reveal a direct link between environmental changes and somatic variability, potentially illuminating our understanding of how variation can surface from a single genotype under stress. Here, we tackle this question by leveraging the biological properties of ciliates. When Paramecium tetraurelia reproduces sexually, its polyploid somatic genome regenerates from the germline genome through a developmental process that involves the removal of thousands of ORF-interrupting sequences known as internal eliminated sequences (IESs). We show that exposure to nonstandard culture temperatures impacts the efficiency of this process of programmed DNA elimination, prompting the emergence of hundreds of incompletely excised IESs in the newly developed somatic genome. These alternative DNA isoforms display a patterned genomic topography, impact gene expression, and might be inherited transgenerationally. On this basis, we conclude that environmentally induced developmental thermoplasticity contributes to genotypic diversification in Paramecium.
Collapse
Affiliation(s)
- Valerio Vitali
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Rebecca Hagen
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Bhullar S, Denby Wilkes C, Arnaiz O, Nowacki M, Sperling L, Meyer E. A mating-type mutagenesis screen identifies a zinc-finger protein required for specific DNA excision events in Paramecium. Nucleic Acids Res 2019; 46:9550-9562. [PMID: 30165457 PMCID: PMC6182129 DOI: 10.1093/nar/gky772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision.
Collapse
Affiliation(s)
- Simran Bhullar
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France.,Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Meyer
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France
| |
Collapse
|
9
|
Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol 2018; 28:1938-1949.e5. [DOI: 10.1016/j.cub.2018.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
10
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
11
|
Neeb ZT, Nowacki M. RNA-mediated transgenerational inheritance in ciliates and plants. Chromosoma 2018; 127:19-27. [PMID: 29230532 PMCID: PMC5818585 DOI: 10.1007/s00412-017-0655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.
Collapse
Affiliation(s)
- Zachary T Neeb
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
12
|
Wang Y, Wang Y, Sheng Y, Huang J, Chen X, AL-Rasheid KA, Gao S. A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena , Paramecium and Oxytricha. Eur J Protistol 2017; 61:376-387. [DOI: 10.1016/j.ejop.2017.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
13
|
Pilling OA, Rogers AJ, Gulla-Devaney B, Katz LA. Insights into transgenerational epigenetics from studies of ciliates. Eur J Protistol 2017; 61:366-375. [PMID: 28689743 DOI: 10.1016/j.ejop.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics, a term with many meanings, can be broadly defined as the study of dynamic states of the genome. Ciliates, a clade of unicellular eukaryotes, can teach us about the intersection of epigenetics and evolution due to the advantages of working with cultivable ciliate lineages, plus their tendency to express extreme phenotypes such as heritable doublet morphology. Moreover, ciliates provide a powerful model for studying epigenetics given the presence of dimorphic nuclei - a somatic macronucleus and germline micronucleus - within each cell. Here, we exemplify the power of studying ciliates to learn about epigenetic phenomena. We highlight "classical" examples from morphology and physiology including cortical inheritance, mating type determination, and serotype expression. In addition, we detail molecular studies of epigenetic phenomena, including: DNA elimination; alternative processing and unscrambling; and copy number determination. Based on the implications of these studies, we discuss epigenetics as a possible functional mechanism for rapid speciation in ciliates.
Collapse
Affiliation(s)
- Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Anna J Rogers
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Neeb ZT, Hogan DJ, Katzman S, Zahler AM. Preferential expression of scores of functionally and evolutionarily diverse DNA and RNA-binding proteins during Oxytricha trifallax macronuclear development. PLoS One 2017; 12:e0170870. [PMID: 28207760 PMCID: PMC5312943 DOI: 10.1371/journal.pone.0170870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/11/2017] [Indexed: 12/04/2022] Open
Abstract
During its sexual reproduction, the stichotrichous ciliate Oxytricha trifallax orchestrates a remarkable transformation of one of the newly formed germline micronuclear genomes. Hundreds of thousands of gene pieces are stitched together, excised from chromosomes, and replicated dozens of times to yield a functional somatic macronuclear genome composed of ~16,000 distinct DNA molecules that typically encode a single gene. Little is known about the proteins that carry out this process. We profiled mRNA expression as a function of macronuclear development and identified hundreds of mRNAs preferentially expressed at specific times during the program. We find that a disproportionate number of these mRNAs encode proteins that are involved in DNA and RNA functions. Many mRNAs preferentially expressed during macronuclear development have paralogs that are either expressed constitutively or are expressed at different times during macronuclear development, including many components of the RNA polymerase II machinery and homologous recombination complexes. Hundreds of macronuclear development-specific genes encode proteins that are well-conserved among multicellular eukaryotes, including many with links to germline functions or development. Our work implicates dozens of DNA and RNA-binding proteins with diverse evolutionary trajectories in macronuclear development in O. trifallax. It suggests functional connections between the process of macronuclear development in unicellular ciliates and germline specialization and differentiation in multicellular organisms, and argues that gene duplication is a key source of evolutionary innovation in this process.
Collapse
Affiliation(s)
- Zachary T. Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Daniel J. Hogan
- Tocagen Inc., San Diego, California, United States of America
- * E-mail: (DJH); (AMZ)
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (DJH); (AMZ)
| |
Collapse
|
15
|
Abstract
Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.
Collapse
|
16
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
17
|
Woo TT, Chao JL, Yao MC. Dynamic distributions of long double-stranded RNA in Tetrahymena during nuclear development and genome rearrangements. J Cell Sci 2016; 129:1046-58. [DOI: 10.1242/jcs.178236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA deletion in Tetrahymena, leading to the removal of one-third of the genome from developing somatic nuclei. Using an antibody specific for long double-stranded RNAs (dsRNAs), we determined the dynamic subcellular distributions of these RNAs. Conjugation-specific dsRNAs are found and show sequential appearances in parental germline, parental somatic nuclei and finally in new somatic nuclei of progeny. The dsRNAs in germline nuclei and new somatic nuclei are likely transcribed from the sequences destined for deletion; however, the dsRNAs in parental somatic nuclei are unexpected, and PCR analyses suggest their transcription in this nucleus. Deficiency in RNAi pathway leads to abnormal aggregations of dsRNA in both the parental and new somatic nuclei, whereas accumulation of dsRNAs in the germline nuclei is only seen in the Dicer-like gene mutant. In addition, RNAi mutants display an early loss of dsRNAs from developing somatic nuclei. Thus, long dsRNAs are made in multiple nuclear compartments and some are linked to small RNA production whereas others may participate in their regulations.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Tóth KF, Pezic D, Stuwe E, Webster A. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:51-77. [PMID: 26659487 DOI: 10.1007/978-94-017-7417-8_4] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributs significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore poses a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleoprotein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNA sequence to recognize complementary TE targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level - by attracting repressive chromatin modifications to genomic targets - and at the posttranscriptional level - by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cell death and sterility.The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems.
Collapse
Affiliation(s)
- Katalin Fejes Tóth
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA.
| | - Dubravka Pezic
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Evelyn Stuwe
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Alexandre Webster
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
19
|
Ferro D, Lepennetier G, Catania F. Cis-acting signals modulate the efficiency of programmed DNA elimination in Paramecium tetraurelia. Nucleic Acids Res 2015; 43:8157-68. [PMID: 26304543 PMCID: PMC4787833 DOI: 10.1093/nar/gkv843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/01/2015] [Indexed: 12/12/2022] Open
Abstract
In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs’ length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs’ sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs’ sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward.
Collapse
Affiliation(s)
- Diana Ferro
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Gildas Lepennetier
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
20
|
Catania F, Schmitz J. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:547-61. [PMID: 26140477 DOI: 10.1002/wrna.1293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/06/2015] [Indexed: 12/17/2022]
Abstract
Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
21
|
Arambasic M, Sandoval PY, Hoehener C, Singh A, Swart EC, Nowacki M. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium. PLoS One 2014; 9:e112899. [PMID: 25397898 PMCID: PMC4232520 DOI: 10.1371/journal.pone.0112899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/16/2014] [Indexed: 01/25/2023] Open
Abstract
The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.
Collapse
Affiliation(s)
| | | | | | - Aditi Singh
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Ignarski M, Singh A, Swart EC, Arambasic M, Sandoval PY, Nowacki M. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res 2014; 42:11952-64. [PMID: 25270876 PMCID: PMC4231744 DOI: 10.1093/nar/gku874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Collapse
Affiliation(s)
- Michael Ignarski
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
23
|
Lhuillier-Akakpo M, Frapporti A, Denby Wilkes C, Matelot M, Vervoort M, Sperling L, Duharcourt S. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet 2014; 10:e1004665. [PMID: 25254958 PMCID: PMC4177680 DOI: 10.1371/journal.pgen.1004665] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences. The unicellular eukaryote Paramecium tetraurelia provides an extraordinary model for studying the mechanisms involved in zygotic genome rearrangements. At each sexual cycle, differentiation of the somatic nucleus from the zygotic nucleus is characterized by extensive remodeling of the entire somatic genome, which includes the precise excision of 45,000 short noncoding germline DNA segments to reconstitute functional open reading frames. Exploiting the unique properties of the Paramecium genome, we show that the enhancer of zeste like protein Ezl1 is necessary for histone H3 trimethylation on lysines 27 and 9 and is required for the precise excision of 31,000 of these single copy, dispersed germline DNA segments that can be as short as 26 bp in length. This implies that histone marks usually associated with heterochromatin may contribute to the precise demarcation of segments that are even shorter than the length of DNA wrapped around a single nucleosome. A quantitative analysis of high throughput sequencing datasets further shows that the underlying genetic properties of the germline DNA segments might act in concert with epigenetic signals to define germline specific sequences.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ., IFD, Paris, France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Mélody Matelot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Marmignon A, Bischerour J, Silve A, Fojcik C, Dubois E, Arnaiz O, Kapusta A, Malinsky S, Bétermier M. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 2014; 10:e1004552. [PMID: 25166013 PMCID: PMC4148214 DOI: 10.1371/journal.pgen.1004552] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR. DNA double-strand breaks (DSBs) are potential threats for chromosome stability, but they are usually repaired by two major pathways, homologous recombination or non-homologous end joining (NHEJ). DSBs can also be essential during physiological processes, such as the programmed removal of germline sequences that takes place in various eukaryotes, including ciliates, during somatic differentiation. We use the ciliate Paramecium tetraurelia as a unicellular model to study how DNA breakage and DSB repair are coordinated during programmed genome rearrangements. In this organism, assembly of the somatic genome involves the elimination of ∼25% of germline DNA, including the precise excision of thousands of short Internal Eliminated Sequences (IES) scattered along germline chromosomes. A domesticated piggyBac transposase, PiggyMac, is required for double-strand DNA cleavage at IES ends and IES excision sites are very precisely repaired by the NHEJ pathway. Here, we report that a specialized Ku heterodimer, specifically expressed during programmed genome rearrangements, is an essential partner of PiggyMac and activates DNA cleavage. We propose that incorporation of DSB repair proteins in a pre-cleavage complex constitutes a safe and efficient way for Paramecium to direct thousands of programmed DSBs to the NHEJ pathway and make sure that somatic chromosomes are assembled correctly.
Collapse
Affiliation(s)
- Antoine Marmignon
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Julien Bischerour
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aude Silve
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Clémentine Fojcik
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Emeline Dubois
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aurélie Kapusta
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Sophie Malinsky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
- * E-mail:
| |
Collapse
|
25
|
Swart EC, Wilkes CD, Sandoval PY, Arambasic M, Sperling L, Nowacki M. Genome-wide analysis of genetic and epigenetic control of programmed DNA deletion. Nucleic Acids Res 2014; 42:8970-83. [PMID: 25016527 PMCID: PMC4132734 DOI: 10.1093/nar/gku619] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control.
Collapse
Affiliation(s)
- Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198 cedex, France Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198 cedex, France Université Paris-Sud, Département de Biologie, Orsay, F-91405, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
26
|
Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 2014; 509:447-52. [PMID: 24805235 DOI: 10.1038/nature13318] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 04/11/2014] [Indexed: 12/30/2022]
Abstract
In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Collapse
Affiliation(s)
- Deepankar Pratap Singh
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Baptiste Saudemont
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [3] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Gérard Guglielmi
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Jean-François Goût
- 1] CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 Novembre 1918, Villeurbanne F-69622, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Malgorzata Prajer
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, St Petersburg State University, Saint Petersburg 199034, Russia
| | - Ewa Przybòs
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Anne Aubusson-Fleury
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Simran Bhullar
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Khaled Bouhouche
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Maoussi Lhuillier-Akakpo
- 1] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [2] Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Corinne Blugeon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| |
Collapse
|
27
|
Abstract
In ciliated protozoans, small RNAs (sRNAs) are integral to guiding large-scale genomic rearrangements after mating. Sandoval et al. (2014) report in this issue of Developmental Cell the discovery of a class of Paramecium sRNAs, produced by a unique Dicer-like enzyme, that likely provides late stage quality control in this process.
Collapse
Affiliation(s)
- Zachary T Neeb
- Department of Molecular, Cell and Developmental Biology and The Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alan M Zahler
- Department of Molecular, Cell and Developmental Biology and The Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
28
|
Sandoval PY, Swart EC, Arambasic M, Nowacki M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell 2014; 28:174-88. [PMID: 24439910 DOI: 10.1016/j.devcel.2013.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 12/15/2022]
Abstract
In eukaryotes, small RNAs (sRNAs) have key roles in development, gene expression regulation, and genome integrity maintenance. In ciliates, such as Paramecium, sRNAs form the heart of an epigenetic system that has evolved from core eukaryotic gene silencing components to selectively target DNA for deletion. In Paramecium, somatic genome development from the germline genome accurately eliminates the bulk of typically gene-interrupting, noncoding DNA. We have discovered an sRNA class (internal eliminated sequence [IES] sRNAs [iesRNAs]), arising later during Paramecium development, which originates from and precisely delineates germline DNA (IESs) and complements the initial sRNAs ("scan" RNAs [scnRNAs]) in targeting DNA for elimination. We show that whole-genome duplications have facilitated successive differentiations of Paramecium Dicer-like proteins, leading to cooperation between Dcl2 and Dcl3 to produce scnRNAs and to the production of iesRNAs by Dcl5. These innovations highlight the ability of sRNA systems to acquire capabilities, including those in genome development and integrity.
Collapse
Affiliation(s)
- Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland.
| |
Collapse
|
29
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Catania F, McGrath CL, Doak TG, Lynch M. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential. Genome Biol Evol 2013; 5:1200-11. [PMID: 23737328 PMCID: PMC3698930 DOI: 10.1093/gbe/evt087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic--often coding--DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
Research using ciliates revealed early examples of epigenetic phenomena and continues to provide novel findings. These protozoans maintain separate germline and somatic nuclei that carry transcriptionally silent and active genomes, respectively. Examining the differences in chromatin within distinct nuclei of Tetrahymena identified histone variants and established that transcriptional regulators act by modifying histones. Formation of somatic nuclei requires both transcriptional activation of silent chromatin and large-scale DNA elimination. This somatic genome remodeling is directed by homologous RNAs, acting with an RNA interference (RNAi)-related machinery. Furthermore, the content of the parental somatic genome provides a homologous template to guide this genome restructuring. The mechanisms regulating ciliate DNA rearrangements reveal the surprising power of homologous RNAs to remodel the genome and transmit information transgenerationally.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
32
|
Dogma derailed: the many influences of RNA on the genome. Mol Cell 2013; 49:783-94. [PMID: 23473599 DOI: 10.1016/j.molcel.2013.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/26/2013] [Accepted: 02/01/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic control of gene expression is a critical component of transcriptional regulation. Remarkably, the deposition of epigenetic modifications is often guided by noncoding RNAs. Although noncoding RNAs have been most often implicated in posttranscriptional gene silencing, these molecules are now emerging as critical regulators of gene expression and genomic stability at the transcriptional level. Here, we review recent efforts to understand the mechanisms by which RNA controls the expression or content of DNA. We discuss the role of both small RNAs and long noncoding RNAs in directing chromatin changes through histone modifications and DNA methylation. Furthermore, we highlight the function of RNA in mediating DNA cleavage during genome rearrangements and pathogen defense. In understanding the mechanisms of RNA control over DNA, the power of RNA may one day be harnessed to impact gene expression in a therapeutic setting.
Collapse
|
33
|
Abstract
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Collapse
|
34
|
Fang W, Wang X, Bracht JR, Nowacki M, Landweber LF. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 2013; 151:1243-55. [PMID: 23217708 DOI: 10.1016/j.cell.2012.10.045] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/19/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Genome duality in ciliated protozoa offers a unique system to showcase their epigenome as a model of inheritance. In Oxytricha, the somatic genome is responsible for vegetative growth, whereas the germline contributes DNA to the next sexual generation. Somatic nuclear development removes all transposons and other so-called "junk" DNA, which comprise ~95% of the germline. We demonstrate that Piwi-interacting small RNAs (piRNAs) from the maternal nucleus can specify genomic regions for retention in this process. Oxytricha piRNAs map primarily to the somatic genome, representing the ~5% of the germline that is retained. Furthermore, injection of synthetic piRNAs corresponding to normally deleted regions leads to their retention in later generations. Our findings highlight small RNAs as powerful transgenerational carriers of epigenetic information for genome programming.
Collapse
Affiliation(s)
- Wenwen Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
35
|
The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 2012; 8:e1002984. [PMID: 23071448 PMCID: PMC3464196 DOI: 10.1371/journal.pgen.1002984] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. Ciliates are unicellular eukaryotes that rearrange their genomes at every sexual generation when a new somatic macronucleus, responsible for gene expression, develops from a copy of the germline micronucleus. In Paramecium, assembly of a functional somatic genome requires precise excision of interstitial DNA segments, the Internal Eliminated Sequences (IES), involving a domesticated piggyBac transposase, PiggyMac. To study IES origin and evolution, we sequenced germline DNA and identified 45,000 IESs. We found that at least some of these unique-copy elements are decayed Tc1/mariner transposons and that IES insertion is likely an ongoing process. After insertion, elements decay rapidly by accumulation of deletions and substitutions. The 93% of IESs shorter than 150 bp display a remarkable size distribution with a periodicity of 10 bp, the helical repeat of double-stranded DNA, consistent with the idea that evolution has only retained IESs that can form a double-stranded DNA loop during assembly of an excision complex. We propose that the ancient domestication of a piggyBac transposase, which provided a precise excision mechanism, enabled transposons to subsequently invade Paramecium coding sequences, a fraction of the genome that does not usually tolerate parasitic DNA.
Collapse
|
36
|
Copy number variations of 11 macronuclear chromosomes and their gene expression in Oxytricha trifallax. Gene 2012; 505:75-80. [DOI: 10.1016/j.gene.2012.05.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/25/2012] [Accepted: 05/21/2012] [Indexed: 01/17/2023]
|
37
|
Schoeberl UE, Kurth HM, Noto T, Mochizuki K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev 2012; 26:1729-42. [PMID: 22855833 PMCID: PMC3418590 DOI: 10.1101/gad.196493.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023]
Abstract
The ciliated protozoan Tetrahymena undergoes extensive programmed DNA elimination when the germline micronucleus produces the new macronucleus during sexual reproduction. DNA elimination is epigenetically controlled by DNA sequences of the parental macronuclear genome, and this epigenetic regulation is mediated by small RNAs (scan RNAs [scnRNAs]) of ∼28-30 nucleotides that are produced and function by an RNAi-related mechanism. Here, we examine scnRNA production and turnover by deep sequencing. scnRNAs are produced exclusively from the micronucleus and nonhomogeneously from a variety of chromosomal locations. scnRNAs are preferentially derived from the eliminated sequences, and this preference is mainly determined at the level of transcription. Despite this bias, a significant fraction of scnRNAs is also derived from the macronuclear-destined sequences, and these scnRNAs are degraded during the course of sexual reproduction. These results indicate that the pattern of DNA elimination in the new macronucleus is shaped by the biased transcription in the micronucleus and the selective degradation of scnRNAs in the parental macronucleus.
Collapse
Affiliation(s)
| | | | | | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| |
Collapse
|
38
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
39
|
Mochizuki K. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena. Dev Growth Differ 2011; 54:108-19. [PMID: 22103557 DOI: 10.1111/j.1440-169x.2011.01305.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmentally programmed genome rearrangement has been observed in a variety of eukaryotes from vertebrates to worms to protists, and it provides an interesting exception to the general rule of the constancy of the genome. DNA elimination in the ciliated protozoan Tetrahymena is one of the most well-characterized programmed genome rearrangement events. DNA elimination in the newly formed macronucleus of Tetrahymena is epigenetically regulated by the DNA sequence of the parental macronucleus. Dicer-produced, Piwi-associated small RNAs mediate this epigenetic regulation, probably through a whole-genome comparison of the germline micronucleus to the somatic macronucleus. However, a correlation between small RNAs and programmed genome rearrangement could not be detected in the worm Ascaris suum. Therefore, different types of eukaryotes may have developed unique solutions to perform genome rearrangement.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
| |
Collapse
|
40
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
41
|
Schoeberl UE, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates. J Biol Chem 2011; 286:37045-52. [PMID: 21914793 DOI: 10.1074/jbc.r111.276964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many transposon-related sequences are removed from the somatic macronucleus of ciliates during sexual reproduction. In the ciliate Tetrahymena, an RNAi-related mechanism produces small noncoding RNAs that induce heterochromatin formation, which is followed by DNA elimination. Because RNAi-related mechanisms repress transposon activities in a variety of eukaryotes, the DNA elimination mechanism of ciliates might have evolved from these types of transposon-silencing mechanisms. Nuclear dimorphism allows ciliates to identify any DNA that has invaded the germ-line micronucleus using small RNAs and a whole genome comparison of the micronucleus and the somatic macronucleus.
Collapse
Affiliation(s)
- Ursula E Schoeberl
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | |
Collapse
|
42
|
Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 2011; 45:227-46. [PMID: 21910632 DOI: 10.1146/annurev-genet-110410-132432] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoa extensively remodel their somatic genomes during nuclear development, fragmenting their chromosomes and removing large numbers of internal eliminated sequences (IESs). The sequences eliminated are unique and repetitive DNAs, including transposons. Recent studies have identified transposase proteins that appear to have been domesticated and are used by these cells to eliminate DNA not wanted in the somatic macronucleus. This DNA elimination process is guided by meiotically produced small RNAs, generated in the germline nucleus, that recognize homologous sequences leading to their removal. These scan RNAs are found in complexes with PIWI proteins. Before they search the developing genome for IESs to eliminate, they scan the parental somatic nucleus and are removed from the pool if they match homologous sequences in that previously reorganized genome. In Tetrahymena, the scan RNAs target heterochromatin modifications to mark IESs for elimination. This DNA elimination pathway in ciliates shares extensive similarity with piRNA-mediated silencing of metazoans and highlights the remarkable ability of homologous RNAs to shape developing genomes.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
43
|
Sperling L. Remembrance of things past retrieved from the Paramecium genome. Res Microbiol 2011; 162:587-97. [DOI: 10.1016/j.resmic.2011.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
|
44
|
Bouhouche K, Gout JF, Kapusta A, Bétermier M, Meyer E. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res 2011; 39:4249-64. [PMID: 21216825 PMCID: PMC3105430 DOI: 10.1093/nar/gkq1283] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.
Collapse
Affiliation(s)
- Khaled Bouhouche
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
Ciliated protozoa undergo extensive DNA rearrangements, including DNA elimination, chromosome breakage and DNA unscrambling, when the germline micronucleus produces the new macronucleus during sexual reproduction. It has long been known that many of these events are epigenetically controlled by DNA sequences of the parental macronuclear genome. Recent studies in some model ciliates have revealed that these epigenetic regulations are mediated by non-coding RNAs. DNA elimination in Paramecium and Tetrahymena is regulated by small RNAs that are produced and operated by an RNAi (RNA interference)-related mechanism. It has been proposed that the small RNAs from the micronuclear genome can be used to identify eliminated DNAs by whole-genome comparison of the parental macronucleus and the micronucleus. In contrast, DNA unscrambling in Oxytricha is guided by long non-coding RNAs that are produced from the somatic parental macronuclear genome. These RNAs are proposed to act as templates for the direct unscrambling events that occur in the developing macronucleus. The possible evolutionary benefits of these RNA-directed epigenetic regulations of DNA rearrangement in ciliates are discussed in the present chapter.
Collapse
|
46
|
Mochizuki K. DNA rearrangements directed by non-coding RNAs in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:376-87. [PMID: 21956937 PMCID: PMC3746294 DOI: 10.1002/wrna.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA unscrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNA interference (RNAi)-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA unscrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct unscrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria.
| |
Collapse
|
47
|
|
48
|
Nowacki M, Landweber LF. Epigenetic inheritance in ciliates. Curr Opin Microbiol 2009; 12:638-43. [PMID: 19879799 DOI: 10.1016/j.mib.2009.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/10/2009] [Indexed: 01/12/2023]
Abstract
2009 marks not only the 200th anniversary of Darwin's birth but also publication of the first scientific evolutionary theory, Lamarck's Philosophie Zoologique. While Lamarck embraced the notion of the inheritance of acquired characters, he did not invent it (Burkhardt, 1984). New phenomena discovered recently offer molecular pathways for the transmission of several acquired characters. Ciliates have long provided model systems to study phenomena that bypass traditional modes of inheritance. RNA, normally thought of as a conduit in gene expression, displays a novel mode of action in ciliated protozoa. For example, maternal RNA templates provide both an organizing guide for DNA rearrangements in Oxytricha and a template that can transmit spontaneous mutations that may arise during somatic growth to the next generation, providing two such mechanisms of so-called Lamarckian inheritance. This suggests that the somatic ciliate genome is really an 'epigenome', formed through templates and signals arising from the previous generation. This review will discuss these new biological roles for RNA, including non-coding 'template' RNA molecules. The evolutionary consequences of viable mechanisms in ciliates to transmit acquired characters may create an additional store of heritable variation that contributes to the cosmopolitan success of this diverse lineage of microbial eukaryotes.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
49
|
Duharcourt S, Lepère G, Meyer E. Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 2009; 25:344-50. [PMID: 19596481 DOI: 10.1016/j.tig.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
Several classes of non-protein-coding RNAs have recently been identified as epigenetic regulators of developmental genome rearrangements in ciliates, providing an interesting insight into the role of genome-wide transcription. In these unicellular eukaryotes, extensive rearrangements of the germline genome occur during the development of a new somatic macronucleus from the germline micronucleus. Rearrangement patterns are not dictated by the germline sequence, but reproduce the pre-existing rearrangements of the maternal somatic genome, implying a homology-dependent global comparison of germline and somatic genomes. We review recent evidence showing that this is achieved by a natural genomic subtraction, computed by pairing interactions between meiosis-specific, germline scnRNAs (small RNAs that resemble metazoan piRNAs) and longer non-coding transcripts from the somatic genome. We focus on current models for the RNA-based mechanisms enabling the cell to recognize the germline sequences to be eliminated from the somatic genome and to maintain an epigenetic memory of rearrangement patterns across sexual generations.
Collapse
Affiliation(s)
- Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, 75005 Paris, France.
| | | | | |
Collapse
|
50
|
Abstract
A transposon in the germline genome of the ciliate Oxytricha uses its transposase to remove itself, as well as other germline-limited DNA, from the differentiating somatic genome during development.
Collapse
Affiliation(s)
- Douglas L Chalker
- Biology Department, Washington University in St, Louis, One Brookings Drive, St, Louis, MO 63130, USA.
| |
Collapse
|