1
|
Li KJ, Qi L, Zhu YX, He M, Xiang Q, Zheng DQ. Spontaneous and environment induced genomic alterations in yeast model. CELL INSIGHT 2025; 4:100209. [PMID: 39629481 PMCID: PMC11612379 DOI: 10.1016/j.cellin.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
While genomic alterations are fundamental to biological evolution, enabling adaptation and diversity, they can also result in detrimental outcomes, such as the development of genetic diseases including cancer. The budding yeast Saccharomyces cerevisiae serves as an exemplary model for investigating the mechanisms behind various genomic alterations, including point mutations, chromosomal rearrangements, and whole-chromosome aneuploidy. In this review, we highlight the application of genetic screening systems to assess the mutagenic effects of physical and chemical agents efficiently. Additionally, we discuss the utilization of high-throughput sequencing technologies to uncover comprehensive genomic alterations and rare genetic events. We provide a detailed summary of the features of genomic alterations and discuss the genetic mechanisms driving these changes under both spontaneous and stress-induced conditions. Given the high conservation of DNA replication and repair machinery across different organisms, the insights gained from studies on yeast offer valuable perspectives for understanding the delicate balance between genome plasticity and integrity in other species.
Collapse
Affiliation(s)
- Ke-Jing Li
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 316021, China
| | - Lei Qi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, 27705, USA
| | - Ying-Xuan Zhu
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 316021, China
| | - Min He
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 316021, China
| | - Qian Xiang
- Lishui University, Lishui, 323000, China
| | - Dao-Qiong Zheng
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 316021, China
| |
Collapse
|
2
|
Maruki T, Ozere A, Freeman J, Cristescu ME. What can we infer about mutation calling by using time-series mutation accumulation data and a Bayesian Mutation Finder? Ecol Evol 2024; 14:e70339. [PMID: 39524312 PMCID: PMC11550904 DOI: 10.1002/ece3.70339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate estimates of mutation rates derived from genome-wide mutation accumulation (MA) data are fundamental to understanding basic evolutionary processes. The rapidly improving high-throughput sequencing technologies provide unprecedented opportunities to identify single nucleotide mutations across genomes. However, such MA derived data are often difficult to analyze and the performance of the available methods of analysis is not well understood. In this study, we used the existing Bayesian Genotype Caller adapted for MA data that we refer to as Bayesian Mutation Finder (BMF) for identifying single nucleotide mutations while considering the characteristics of the data. We compared the performance of BMF with the widely used Genome Analysis Toolkit (GATK) by applying these two methods to time-series MA data as well as simulated data. The time-series data were obtained by propagating Daphnia pulex over an average of 188 generations and performing whole-genome sequencing of 14 MA lines across three time points. The results indicate that BMF enables more accurate identification of single nucleotide mutations than GATK especially when applied to the empirical data. Furthermore, BMF involves the use of fewer parameters and is more computationally efficient than GATK. Both BMF and GATK found surprisingly many candidate mutations that were not confirmed at later time points. We systematically infer causes of the unconfirmed candidate mutations, introduce a framework for estimating mutation rates based on genome-wide candidate mutations confirmed by subsequent sequencing, and provide an improved mutation rate estimate for D. pulex.
Collapse
Affiliation(s)
| | - April Ozere
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jack Freeman
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
3
|
Sromek L, Johnson KP, Kunnasranta M, Ylinen E, Virrueta Herrera S, Andrievskaya E, Alexeev V, Rusinek O, Rosing-Asvid A, Nyman T. Population genomics of seal lice provides insights into the postglacial history of northern European seals. Mol Ecol 2024; 33:e17523. [PMID: 39248016 DOI: 10.1111/mec.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.
Collapse
Affiliation(s)
- Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Natural Resources Institute Finland, Joensuu, Finland
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | | | - Olga Rusinek
- Baikal Museum of the Siberian Branch of the Russian Academy of Sciences, Listvyanka, Russia
| | | | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
4
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Tautz D, Keightley PD. Variation in the Spectrum of New Mutations among Inbred Strains of Mice. Mol Biol Evol 2024; 41:msae163. [PMID: 39101589 PMCID: PMC11327921 DOI: 10.1093/molbev/msae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼μ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
Collapse
Affiliation(s)
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Audet T, Krol J, Pelletier K, Stewart AD, Dworkin I. Sexually discordant selection is associated with trait-specific morphological changes and a complex genomic response. Evolution 2024; 78:1426-1440. [PMID: 38720526 DOI: 10.1093/evolut/qpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
Sexes often have differing fitness optima, potentially generating intra-locus sexual conflict, as each sex bears a genetic "load" of alleles beneficial to the other sex. One strategy to evaluate conflict in the genome is to artificially select populations discordantly against established sexual dimorphism (SD), reintroducing attenuated conflict. We investigate a long-term artificial selection experiment reversing sexual size dimorphism in Drosophila melanogaster during ~350 generations of sexually discordant selection. We explore morphological and genomic changes to identify loci under selection between the sexes in discordantly and concordantly size-selected treatments. Despite substantial changes to overall size, concordant selection maintained ancestral SD. However, discordant selection altered size dimorphism in a trait-specific manner. We observe multiple possible soft selective sweeps in the genome, with size-related genes showing signs of selection. Patterns of genomic differentiation between the sexes within lineages identified potential sites maintained by sexual conflict. One discordant selected lineage shows a pattern of elevated genomic differentiation between males and females on chromosome 3L, consistent with the maintenance of sexual conflict. Our results suggest visible signs of conflict and differentially segregating alleles between the sexes due to discordant selection.
Collapse
Affiliation(s)
- Tyler Audet
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Joelle Krol
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Katie Pelletier
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Andrew D Stewart
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Wang S, Li Y, Jiang K, Zhou J, Chen J, Liang J, Ndoni A, Xue H, Ye Z, Bu W. Identifying a potentially invasive population in the native range of a species: The enlightenment from the phylogeography of the yellow spotted stink bug, Erthesina fullo (Hemiptera: Pentatomidae). Mol Phylogenet Evol 2024; 195:108056. [PMID: 38493987 DOI: 10.1016/j.ympev.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kun Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, PR China
| | - Jiayue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jingyu Liang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
8
|
Fu S, Chen X, Wang K, Chen J, Zhou J, Yi W, Lyu M, Ye Z, Bu W. Shared phylogeographic patterns and environmental responses of co-distributed soybean pests: Insights from comparative phylogeographic studies of Riptortus pedestris and Riptortus linearis in the subtropics of East Asia. Mol Phylogenet Evol 2024; 195:108055. [PMID: 38485106 DOI: 10.1016/j.ympev.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.
Collapse
Affiliation(s)
- Siying Fu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China(2)
| | - Kaibin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juhong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiayue Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China(2)
| | - Minhua Lyu
- Nanchang University, Affiliated Hospital 1, Jiangxi, China(2)
| | - Zhen Ye
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Xiao Z, Ying W, Xing Z, Zhihui L, Qiuyu Z, Caijiao H, Changlong L, Shi H, Deng L, Zhenwen C, Jianquan N, Xueyun H, Xiaoyan D. Unexpected mutations occurred in CRISPR/Cas9 edited Drosophila analyzed by deeply whole genomic sequencing. Heliyon 2024; 10:e29061. [PMID: 38596060 PMCID: PMC11002691 DOI: 10.1016/j.heliyon.2024.e29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
CRISPR/Cas9 possesses the most promising prospects as a gene-editing tool in post-genomic researches. It becomes an epoch-marking technique for the features of speed and convenience of genomic modification. However, it is still unclear whether CRISPR/Cas9 gene editing can cause irreversible damage to the genome. In this study, we successfully knocked out the WHITE gene in Drosophila, which governs eye color, utilizing CRISPR/Cas9 technology. Subsequently, we conducted high-throughput sequencing to assess the impact of this editing process on the stability of the entire genomic profile. The results revealed the presence of numerous unexpected mutations in the Drosophila genome, including 630 SNVs (Single Nucleotide Variants), 525 Indels (Insertion and Deletion) and 425 MSIs (microsatellite instability). Although the KO (knockout) specifically occurred on chromosome X, the majority of mutations were observed on chromosome 3, indicating that this effect is genome-wide and associated with the spatial structure between chromosomes, rather than being solely limited to the location of the KO gene. It is worth noting that most of the mutations occurred in the intergenic and intron regions, without exerting any significant on the function or healthy of the animal. In addition, the mutations downstream of the knockout gene well beyond the upstream. This study has found that gene editing can lead to unexpected mutations in the genome, but most of these mutations are harmless. This research has deepened our understanding of CRISPR/Cas9 and broadened its application prospects.
Collapse
Affiliation(s)
- Zhu Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Wu Ying
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhang Xing
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Zhihui
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhang Qiuyu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Hu Caijiao
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Changlong
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Hanping Shi
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Deng
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chen Zhenwen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ni Jianquan
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Huo Xueyun
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Du Xiaoyan
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Sethuraman A, Nunziata SO, Jones A, Obrycki J, Weisrock DW. Go west: Population genomics reveals unexpected population fluctuations and little gene flow in Western hemisphere populations of the predatory lady beetle, Hippodamia convergens. Evol Appl 2024; 17:e13631. [PMID: 38283604 PMCID: PMC10810170 DOI: 10.1111/eva.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hippodamia convergens-the convergent lady beetle, has been used extensively in augmentative biological control of aphids, thrips, and whiteflies across its native range in North America, and was introduced into South America in the 1950s. Overwintering H. convergens populations from its native western range in the United States are commercially collected and released across its current range in the eastern USA, with little knowledge of the effectiveness of its augmentative biological control. Here we use a novel ddRADseq-based SNP/haplotype discovery approach to estimate its range-wide population diversity, differentiation, and recent evolutionary history. Our results indicate (1) significant population differentiation among eastern USA, western USA, and South American populations of H. convergens, with (2) little to no detectable recent admixture between them, despite repeated population augmentation, and (3) continued recent population size expansion across its range. These results contradict previous findings using microsatellite markers. In light of these new findings, the implications for the effectiveness of augmentative biological control using H. convergens are discussed. Additionally, because quantifying the non-target effects of augmentative biological control is a difficult problem in migratory beetles, our results could serve as a cornerstone in improving and predicting the efficacy of future releases of H. convergens across its range.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Schyler O. Nunziata
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
United States Department of AgricultureWashingtonDCUSA
| | - Angela Jones
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Duke UniversityDurhamNorth CarolinaUSA
| | - John Obrycki
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | |
Collapse
|
12
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Xu X, Chen M, Chen T, Ni X, Fang Z, Fang Y, Zhang L, Zhang X, Huang J. Ultra-high static magnetic field induces a change in the spectrum but not frequency of DNA spontaneous mutations in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1305069. [PMID: 38126008 PMCID: PMC10731980 DOI: 10.3389/fpls.2023.1305069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Biological effects of magnetic fields have been extensively studied in plants, microorganisms and animals, and applications of magnetic fields in regulation of plant growth and phytoprotection is a promising field in sustainable agriculture. However, the effect of magnetic fields especially ultra-high static magnetic field (UHSMF) on genomic stability is largely unclear. Here, we investigated the mutagenicity of 24.5, 30.5 and 33.0 T UHSMFs with the gradient of 150, 95 and 0 T/m, respectively, via whole genome sequencing. Our results showed that 1 h exposure of Arabidopsis dried seeds to UHSMFs has no significant effect on the average rate of DNA mutations including single nucleotide variations and InDels (insertions and deletions) in comparison with the control, but 33.0 T and 24.5 T treatments lead to a significant change in the rate of nucleotide transitions and InDels longer than 3 bp, respectively, suggesting that both strength and gradient of UHSMF impact molecular spectrum of DNA mutations. We also found that the decreased transition rate in UHSMF groups is correlated with the upstream flanking sequences of G and C mutation sites. Furthermore, the germination rate of seeds exposed to 24.5 T SMF with -150 T/m gradient showed a significant decrease at 24 hours after sowing. Overall, our data lay a basis for precisely assessing the potential risk of UHSMF on DNA stability, and for elucidating molecular mechanism underlying gradient SMF-regulated biological processes in the future.
Collapse
Affiliation(s)
- Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tianli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xinda Ni
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Heye Health Technology Co., Ltd., Huzhou, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Heye Health Technology Co., Ltd., Huzhou, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Strunov A, Kirchner S, Schindelar J, Kruckenhauser L, Haring E, Kapun M. Historic Museum Samples Provide Evidence for a Recent Replacement of Wolbachia Types in European Drosophila melanogaster. Mol Biol Evol 2023; 40:msad258. [PMID: 37995370 PMCID: PMC10701101 DOI: 10.1093/molbev/msad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Wolbachia is one of the most common bacterial endosymbionts, which is frequently found in numerous arthropods and nematode taxa. Wolbachia infections can have a strong influence on the evolutionary dynamics of their hosts since these bacteria are reproductive manipulators that affect the fitness and life history of their host species for their own benefit. Host-symbiont interactions with Wolbachia are perhaps best studied in the model organism Drosophila melanogaster, which is naturally infected with at least 5 different variants among which wMel and wMelCS are the most frequent ones. Comparisons of infection types between natural flies and long-term lab stocks have previously indicated that wMelCS represents the ancestral type, which was only very recently replaced by the nowadays dominant wMel in most natural populations. In this study, we took advantage of recently sequenced museum specimens of D. melanogaster that have been collected 90 to 200 yr ago in Northern Europe to test this hypothesis. Our comparison to contemporary Wolbachia samples provides compelling support for the replacement hypothesis. Our analyses show that sequencing data from historic museum specimens and their bycatch are an emerging and unprecedented resource to address fundamental questions about evolutionary dynamics in host-symbiont interactions. However, we also identified contamination with DNA from crickets that resulted in co-contamination with cricket-specific Wolbachia in several samples. These results underpin the need for rigorous quality assessments of museomic data sets to account for contamination as a source of error that may strongly influence biological interpretations if it remains undetected.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sandra Kirchner
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Julia Schindelar
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| | - Luise Kruckenhauser
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Elisabeth Haring
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Central Research Laboratories, Vienna, Austria
| |
Collapse
|
15
|
Mani S, Tlusty T. Gene birth in a model of non-genic adaptation. BMC Biol 2023; 21:257. [PMID: 37957718 PMCID: PMC10644530 DOI: 10.1186/s12915-023-01745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Over evolutionary timescales, genomic loci can switch between functional and non-functional states through processes such as pseudogenization and de novo gene birth. Particularly, de novo gene birth is a widespread process, and many examples continue to be discovered across diverse evolutionary lineages. However, the general mechanisms that lead to functionalization are poorly understood, and estimated rates of de novo gene birth remain contentious. Here, we address this problem within a model that takes into account mutations and structural variation, allowing us to estimate the likelihood of emergence of new functions at non-functional loci. RESULTS Assuming biologically reasonable mutation rates and mutational effects, we find that functionalization of non-genic loci requires the realization of strict conditions. This is in line with the observation that most de novo genes are localized to the vicinity of established genes. Our model also provides an explanation for the empirical observation that emerging proto-genes are often lost despite showing signs of adaptation. CONCLUSIONS Our work elucidates the properties of non-genic loci that make them fertile for adaptation, and our results offer mechanistic insights into the process of de novo gene birth.
Collapse
Affiliation(s)
- Somya Mani
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Yu G, Liu Y, Li Z, Deng S, Wu Z, Zhang X, Chen W, Yang J, Chen X, Yang JR. Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect. Nat Commun 2023; 14:5853. [PMID: 37730811 PMCID: PMC10511511 DOI: 10.1038/s41467-023-41550-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
The transcriptional intermediates of RNAs fold into secondary structures with multiple regulatory roles, yet the details of such cotranscriptional RNA folding are largely unresolved in eukaryotes. Here, we present eSPET-seq (Structural Probing of Elongating Transcripts in eukaryotes), a method to assess the cotranscriptional RNA folding in Saccharomyces cerevisiae. Our study reveals pervasive structural transitions during cotranscriptional folding and overall structural similarities between nascent and mature RNAs. Furthermore, a combined analysis with genome-wide R-loop and mutation rate approximations provides quantitative evidence for the antimutator effect of nascent RNA folding through competitive inhibition of the R-loops, known to facilitate transcription-associated mutagenesis. Taken together, we present an experimental evaluation of cotranscriptional folding in eukaryotes and demonstrate the antimutator effect of nascent RNA folding. These results suggest genome-wide coupling between the processing and transmission of genetic information through RNA folding.
Collapse
Affiliation(s)
- Gongwang Yu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Liu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zizhang Li
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Deng
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhuoxing Wu
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Chen
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junnan Yang
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoshu Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Snyman M, Xu S. The effects of mutations on gene expression and alternative splicing. Proc Biol Sci 2023; 290:20230565. [PMID: 37403507 PMCID: PMC10320348 DOI: 10.1098/rspb.2023.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Understanding the relationship between mutations and their genomic and phenotypic consequences has been a longstanding goal of evolutionary biology. However, few studies have investigated the impact of mutations on gene expression and alternative splicing on the genome-wide scale. In this study, we aim to bridge this knowledge gap by utilizing whole-genome sequencing data and RNA sequencing data from 16 obligately parthenogenetic Daphnia mutant lines to investigate the effects of ethyl methanesulfonate-induced mutations on gene expression and alternative splicing. Using rigorous analyses of mutations, expression changes and alternative splicing, we show that trans-effects are the major contributor to the variance in gene expression and alternative splicing between the wild-type and mutant lines, whereas cis mutations only affected a limited number of genes and do not always alter gene expression. Moreover, we show that there is a significant association between differentially expressed genes and exonic mutations, indicating that exonic mutations are an important driver of altered gene expression.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
19
|
Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, Tsambos G, Adrion J, Belsare S, Biddanda A, Caudill V, Cury J, Echevarria I, Haller BC, Hasan AR, Huang X, Iasi LNM, Noskova E, Obsteter J, Pavinato VAC, Pearson A, Peede D, Perez MF, Rodrigues MF, Smith CCR, Spence JP, Teterina A, Tittes S, Unneberg P, Vazquez JM, Waples RK, Wohns AW, Wong Y, Baumdicker F, Cartwright RA, Gorjanc G, Gutenkunst RN, Kelleher J, Kern AD, Ragsdale AP, Ralph PL, Schrider DR, Gronau I. Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations. eLife 2023; 12:RP84874. [PMID: 37342968 DOI: 10.7554/elife.84874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.
Collapse
Affiliation(s)
- M Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Maria Izabel A Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | | | - Graham Gower
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nathaniel S Pope
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Georgia Tsambos
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Jeffrey Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
- Ancestry DNA, San Francisco, United States
| | - Saurabh Belsare
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | | | - Victoria Caudill
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Jean Cury
- Universite Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numerique, Orsay, France
| | | | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, United States
| | - Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Xin Huang
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, St Petersburg, Russian Federation
| | - Jana Obsteter
- Agricultural Institute of Slovenia, Department of Animal Science, Ljubljana, Slovenia
| | | | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, United States
- Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Manolo F Perez
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Chris C R Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Jeffrey P Spence
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Anastasia Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Silas Tittes
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Ryan K Waples
- Department of Biostatistics, University of Washington, Seattle, United States
| | | | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Franz Baumdicker
- Cluster of Excellence - Controlling Microbes to Fight Infections, Eberhard Karls Universit¨at Tubingen, Tubingen, Germany
| | - Reed A Cartwright
- School of Life Sciences and The Biodesign Institute, Arizona State University, Tempe, United States
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
- Department of Mathematics, University of Oregon, Eugene, United States
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| |
Collapse
|
20
|
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman A, Li B. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 2023; 21:141. [PMID: 37337183 DOI: 10.1186/s12915-023-01638-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. RESULTS Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. CONCLUSIONS Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yansong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bryce Summerhays
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Xiaohan Shu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yumary Vasquez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Hannah Vansant
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Christy Grenier
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Nicolette Gonzalez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Khyati Kansagra
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Ryan Cartmill
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | | | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Zoology & Ecology, Hungarian University of Agriculture & Life Sciences, Godollo, Hungary
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arun Sethuraman
- Department of Biological Sciences, California State University, San Marcos, CA, USA.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, Keightley PD, Obbard DJ. Variation in mutation, recombination, and transposition rates in Drosophila melanogaster and Drosophila simulans. Genome Res 2023; 33:587-598. [PMID: 37037625 PMCID: PMC10234296 DOI: 10.1101/gr.277383.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
The rates of mutation, recombination, and transposition are core parameters in models of evolution. They impact genetic diversity, responses to ongoing selection, and levels of genetic load. However, even for key evolutionary model species such as Drosophila melanogaster and Drosophila simulans, few estimates of these parameters are available, and we have little idea of how rates vary between individuals, sexes, or populations. Knowledge of this variation is fundamental for parameterizing models of genome evolution. Here, we provide direct estimates of mutation, recombination, and transposition rates and their variation in a West African and a European population of D. melanogaster and a European population of D. simulans Across 89 flies, we observe 58 single-nucleotide mutations, 286 crossovers, and 89 transposable element (TE) insertions. Compared to the European D. melanogaster, we find the West African population has a lower mutation rate (1.67 × 10-9 site-1 gen-1 vs. 4.86 × 10-9 site-1 gen-1) and a lower transposition rate (8.99 × 10-5 copy-1 gen-1 vs. 23.36 × 10-5 copy-1 gen-1), but a higher recombination rate (3.44 cM/Mb vs. 2.06 cM/Mb). The European D. simulans population has a similar mutation rate to European D. melanogaster, but a significantly higher recombination rate and a lower, but not significantly different, transposition rate. Overall, we find paternal-derived mutations are more frequent than maternal ones in both species. Our study quantifies the variation in rates of mutation, recombination, and transposition among different populations and sexes, and our direct estimates of these parameters in D. melanogaster and D. simulans will benefit future studies in population and evolutionary genetics.
Collapse
Affiliation(s)
- Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Paul McNeil
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Susan E Johnston
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
22
|
Kucukyildirim S, Ozdemirel HO, Lynch M. Similar mutation rates but different mutation spectra in moderate and extremely halophilic archaea. G3 (BETHESDA, MD.) 2023; 13:jkac303. [PMID: 36519377 PMCID: PMC9997560 DOI: 10.1093/g3journal/jkac303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2021] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Archaea are a major part of Earth's microbiota and extremely diverse. Yet, we know very little about the process of mutation that drives such diversification. To expand beyond previous work with the moderate halophilic archaeal species Haloferax volcanii, we performed a mutation-accumulation experiment followed by whole-genome sequencing in the extremely halophilic archaeon Halobacterium salinarum. Although Hfx. volcanii and Hbt. salinarum have different salt requirements, both species have highly polyploid genomes and similar GC content. We accumulated mutations for an average of 1250 generations in 67 mutation accumulation lines of Hbt. salinarum, and revealed 84 single-base substitutions and 10 insertion-deletion mutations. The estimated base-substitution mutation rate of 3.99 × 10-10 per site per generation or 1.0 × 10-3 per genome per generation in Hbt. salinarum is similar to that reported for Hfx. volcanii (1.2 × 10-3 per genome per generation), but the genome-wide insertion-deletion rate and spectrum of mutations are somewhat dissimilar in these archaeal species. The spectra of spontaneous mutations were AT biased in both archaea, but they differed in significant ways that may be related to differences in the fidelity of DNA replication/repair mechanisms or a simple result of the different salt concentrations.
Collapse
Affiliation(s)
| | | | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Anholt RRH, Mackay TFC. The genetic architecture of behavioral canalization. Trends Genet 2023:S0168-9525(23)00033-1. [PMID: 36878820 DOI: 10.1016/j.tig.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Behaviors are components of fitness and contribute to adaptive evolution. Behaviors represent the interactions of an organism with its environment, yet innate behaviors display robustness in the face of environmental change, which we refer to as 'behavioral canalization'. We hypothesize that positive selection of hub genes of genetic networks stabilizes the genetic architecture for innate behaviors by reducing variation in the expression of interconnected network genes. Robustness of these stabilized networks would be protected from deleterious mutations by purifying selection or suppressing epistasis. We propose that, together with newly emerging favorable mutations, epistatically suppressed mutations can generate a reservoir of cryptic genetic variation that could give rise to decanalization when genetic backgrounds or environmental conditions change to allow behavioral adaptation.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Trudy F C Mackay
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA
| |
Collapse
|
24
|
Marion SB, Noor MAF. Interrogating the Roles of Mutation-Selection Balance, Heterozygote Advantage, and Linked Selection in Maintaining Recessive Lethal Variation in Natural Populations. Annu Rev Anim Biosci 2023; 11:77-91. [PMID: 36315650 DOI: 10.1146/annurev-animal-050422-092520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For nearly a century, evolutionary biologists have observed chromosomes that cause lethality when made homozygous persisting at surprisingly high frequencies (>25%) in natural populations of many species. The evolutionary forces responsible for the maintenance of such detrimental mutations have been heavily debated-are some lethal mutations under balancing selection? We suggest that mutation-selection balance alone cannot explain lethal variation in nature and the possibility that other forces play a role. We review the potential that linked selection in particular may drive maintenance of lethal alleles through associative overdominance or linkage to beneficial mutations or by reducing effective population size. Over the past five decades, investigation into this mystery has tapered. During this time, key scientific advances have provided the ability to collect more accurate data and analyze them in new ways, making the underlying genetic bases and evolutionary forces of lethal alleles timely for study once more.
Collapse
Affiliation(s)
- Sarah B Marion
- Department of Biology, Duke University, Durham, North Carolina, USA; ,
| | - Mohamed A F Noor
- Department of Biology, Duke University, Durham, North Carolina, USA; ,
| |
Collapse
|
25
|
Wang S, Li Y, Zhou J, Jiang K, Chen J, Ye Z, Xue H, Bu W. The anthropogenic effect of land use on population genetics of Malcus inconspicuus. Evol Appl 2023; 16:98-110. [PMID: 36699121 PMCID: PMC9850013 DOI: 10.1111/eva.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of the Holocene era, human activities have seriously impacted animal habitats and vegetative environments. Species that are dependent on natural habitats or with narrow niches might be more severely affected by habitat changes. Malcus inconspicuus is distributed in subtropical China and highly dependent on the mountain environment. Our study investigated the role of the mountainous landscape in the historical evolution of M. inconspicuus and the impact of Holocene human activities on it. A phylogeographical approach was implemented with integrative datasets including double-digest restriction site-associated DNA (ddRAD), mitochondrial data, and distribution data. Three obvious clades and an east-west phylogeographical pattern were found in subtropical China. Mountainous landscape has "multifaceted" effects on the evolutionary history of M. inconspicuus, it has contributed to population differentiation, provided glacial refuges, and provided population expansion corridors during the postglacial period. The effective population size (Ne) of M. inconspicuus showed a sharp decline during the Holocene era, which revealed a significantly negative correlation with the development of cropland in a hilly area at the same time and space. It supported that the species which are highly dependent on natural habitats might undergo greater impact when the habitat was damaged by agricultural activities and we should pay more attention to them, especially in the land development of their distribution areas.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Yanfei Li
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Jiayue Zhou
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Kun Jiang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Juhong Chen
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Zhen Ye
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Huaijun Xue
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Wenjun Bu
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
26
|
Moreyra NN, Almeida FC, Allan C, Frankel N, Matzkin LM, Hasson E. Phylogenomics provides insights into the evolution of cactophily and host plant shifts in Drosophila. Mol Phylogenet Evol 2023; 178:107653. [PMID: 36404461 DOI: 10.1016/j.ympev.2022.107653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cactophilic species of the Drosophila buzzatii cluster (repleta group) comprise an excellent model group to investigate genomic changes underlying adaptation to extreme climate conditions and host plants. In particular, these species form a tractable system to study the transition from chemically simpler breeding sites (like prickly pears of the genus Opuntia) to chemically more complex hosts (columnar cacti). Here, we report four highly contiguous genome assemblies of three species of the buzzatii cluster. Based on this genomic data and inferred phylogenetic relationships, we identified candidate taxonomically restricted genes (TRGs) likely involved in the evolution of cactophily and cactus host specialization. Functional enrichment analyses of TRGs within the buzzatii cluster identified genes involved in detoxification, water preservation, immune system response, anatomical structure development, and morphogenesis. In contrast, processes that regulate responses to stress, as well as the metabolism of nitrogen compounds, transport, and secretion were found in the set of species that are columnar cacti dwellers. These findings are in line with the hypothesis that those genomic changes brought about key mechanisms underlying the adaptation of the buzzatii cluster species to arid regions in South America.
Collapse
Affiliation(s)
- Nicolás Nahuel Moreyra
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Carson Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85719, USA.
| | - Nicolás Frankel
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | | | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
27
|
Sychla A, Feltman NR, Hutchison WD, Smanski MJ. Modeling-informed Engineered Genetic Incompatibility strategies to overcome resistance in the invasive Drosophila suzukii. FRONTIERS IN INSECT SCIENCE 2022; 2:1063789. [PMID: 38468757 PMCID: PMC10926386 DOI: 10.3389/finsc.2022.1063789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 03/13/2024]
Abstract
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of Drosophila suzukii (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles. We discovered a surprising failure mode wherein field-generated females convert an incompatible male release program into a population replacement gene drive. Local suppression could still be attained in two seasons by tailoring the release strategy to take advantage of this effect, or alternatively in one season by altering the genetic design of release agents. We show in this work that data from modeling can be utilized to recognize unexpected emergent phenomena and a priori inform genetic biocontrol treatment design to increase efficacy.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Nathan R. Feltman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - William D. Hutchison
- Department of Entomology, University of Minnesota, Saint Paul, MN, United States
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN, United States
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
28
|
Hiltunen M, Ament-Velásquez SL, Ryberg M, Johannesson H. Stage-specific transposon activity in the life cycle of the fairy-ring mushroom Marasmius oreades. Proc Natl Acad Sci U S A 2022; 119:e2208575119. [PMID: 36343254 PMCID: PMC9674265 DOI: 10.1073/pnas.2208575119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.
Collapse
Affiliation(s)
- Markus Hiltunen
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
29
|
Mutagenesis alters sperm swimming velocity in Astyanax cave fish. Sci Rep 2022; 12:18709. [PMID: 36379982 PMCID: PMC9666463 DOI: 10.1038/s41598-022-22486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the hypothesis that intra ejaculate sperm competition screens against the transmission of deleterious alleles, including new mutants, from male parent to offspring. Recent investigations have established that sperm haploid genotypes can have major effects on sperm traits such as cellular robustness, longevity, and fertilization success. However, there is no evidence that new mutations can meaningfully affect sperm phenotypes. We tested this directly by comparing sperm from mutagenized and non-mutagenized control males in Astyanax fish. We used N-ethyl-N-nitrosourea (ENU) to induce single base substitutions in spermatogonial stem cells. We looked at swimming velocity, an important factor contributing to fertilization success, and flagellar length. Variability in swimming velocity was significantly higher in sperm from mutagenized males than in control sperm, reflecting their increased allelic diversity. In contrast, flagellar length, which is fixed during diploid stages of spermatogenesis, was unaffected by ENU treatment. We briefly discuss the implications of intra-ejaculate screening for maintenance of anisogamy and for outcomes of assisted reproductive technology.
Collapse
|
30
|
Ba Q, Zhou J, Li J, Cheng S, Zhang X, Wang H. Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13867-13877. [PMID: 36121417 PMCID: PMC9536316 DOI: 10.1021/acs.est.2c04785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The history of long-term environmental exposure to heavy metals can be recorded in the genome as sporadic and specific mutations. Variable environments introduce diverse and adaptive mutations to organisms. To reveal the information hidden in genomes about environmental exposure to heavy metals, we performed long-term mutation accumulation (MA) experiments with Escherichia coli, analyzed genomes from 36 populations across 1650 generations with 6 heavy metal exposure regimes (arsenic, cadmium, chromium, copper, nickel, and lead), and inferred metal-specific evolution modes at the genomic level. All heavy metals induced genetic mutations with a mean rate of 3.459 × 10-9 per nucleotide per generation. The mutational spectrum exhibited distinct signatures; however, heavy metals also shared common mutation signatures prominently associated with all cancer types. The mutated genes showed an average similarity of 54.4% within the same exposure regime, whereas only 38.8% between exposure regimes. In terms of biological insights, mutated genes were enriched to fundamental cellular processes such as metabolism, motility, and transport. Our study elucidates the mutagenic commonality and specificity of environmental heavy metals, which are highly specific at mutational features and locus, but conserved at gene and functional levels, and may play crucial roles in the convergence of adaptation to heavy metals.
Collapse
Affiliation(s)
- Qian Ba
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingqi Zhou
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingquan Li
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Cheng
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokang Zhang
- School
of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Hui Wang
- State
Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell
Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
31
|
Mahilkar A, Raj N, Kemkar S, Saini S. Selection in a growing colony biases results of mutation accumulation experiments. Sci Rep 2022; 12:15470. [PMID: 36104390 PMCID: PMC9475022 DOI: 10.1038/s41598-022-19928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations provide the raw material for natural selection to act. Therefore, understanding the variety and relative frequency of different type of mutations is critical to understanding the nature of genetic diversity in a population. Mutation accumulation (MA) experiments have been used in this context to estimate parameters defining mutation rates, distribution of fitness effects (DFE), and spectrum of mutations. MA experiments can be performed with different effective population sizes. In MA experiments with bacteria, a single founder is grown to a size of a colony (~ 108). It is assumed that natural selection plays a minimal role in dictating the dynamics of colony growth. In this work, we simulate colony growth via a mathematical model, and use our model to mimic an MA experiment. We demonstrate that selection ensures that, in an MA experiment, fraction of all mutations that are beneficial is over-represented by a factor of almost two, and that the distribution of fitness effects of beneficial and deleterious mutations are inaccurately captured in an MA experiment. Given this, the estimate of mutation rates from MA experiments is non-trivial. We then perform an MA experiment with 160 lines of E. coli, and show that due to the effect of selection in a growing colony, the size and sector of a colony from which the experiment is propagated impacts the results. Overall, we demonstrate that the results of MA experiments need to be revisited taking into account the action of selection in a growing colony.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Namratha Raj
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sharvari Kemkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
32
|
The Impact of Fast Radiation on the Phylogeny of Bactrocera Fruit Flies as Revealed by Multiple Evolutionary Models and Mutation Rate-Calibrated Clock. INSECTS 2022; 13:insects13070603. [PMID: 35886779 PMCID: PMC9319077 DOI: 10.3390/insects13070603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Several true fruit flies (Tephritidae) cause major damage to agriculture worldwide. Among them, species of the genus Bactrocera are extensively studied to understand the traits associated with their invasiveness and ecology. Comparative approaches based on a reliable phylogenetic framework are particularly effective, but several nodes of the Bactrocera phylogeny are still controversial, especially concerning the reciprocal affinities of the two major pests B. dorsalis and B. tryoni. Here, we analyzed a newly assembled genomic-scaled dataset using different models of evolution to infer a phylogenomic backbone of ten representative Bactrocera species and two outgroups. We further provide the first genome-scaled inference of their divergence by calibrating the clock using fossil records and the spontaneous mutation rate. The results reveal a closer relationship of B. dorsalis with B. latifrons than to B. tryoni, contrary to what was previously supported by mitochondrial-based phylogenies. By employing coalescent-aware and heterogeneous evolutionary models, we show that this incongruence likely derives from a hitherto undetected systematic error, exacerbated by incomplete lineage sorting and possibly hybridization. This agrees with our clock analysis, which supports a rapid and recent radiation of the clade to which B. dorsalis, B. latifrons and B. tryoni belong. These results provide a new picture of Bactrocera phylogeny that can serve as the basis for future comparative analyses.
Collapse
|
33
|
Ye Z, Yuan J, Damgaard J, Berchi GM, Cianferoni F, Pintar MR, Olosutean H, Zhu X, Jiang K, Yang X, Fu S, Bu W. Climate Warming Since the Holocene Accelerates West-East Communication for the Eurasian Temperate Water Strider Species Aquarius paludum. Mol Biol Evol 2022; 39:6575397. [PMID: 35482393 PMCID: PMC9087890 DOI: 10.1093/molbev/msac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Holocene climate warming has dramatically altered biological diversity and distributions. Recent human-induced emissions of greenhouse gases will exacerbate global warming and thus induce threats to cold-adapted taxa. However, the impacts of this major climate change on transcontinental temperate species are still poorly understood. Here, we generated extensive genomic datasets for a water strider, Aquarius paludum, which was sampled across its entire distribution in Eurasia and used these datasets in combination with ecological niche modeling (ENM) to elucidate the influence of the Holocene and future climate warming on its population structure and demographic history. We found that A. paludum consisted of two phylogeographic lineages that diverged in the middle Pleistocene, which resulted in a “west–east component” genetic pattern that was probably triggered by Central Asia-Mongoxin aridification and Pleistocene glaciations. The diverged western and eastern lineages had a second contact in the Holocene, which shaped a temporary hybrid zone located at the boundary of the arid–semiarid regions of China. Future predictions detected a potentially novel northern corridor to connect the western and eastern populations, indicating west–east gene flow would possibly continue to intensify under future warming climate conditions. Further integrating phylogeographic and ENM analyses of multiple Eurasian temperate taxa based on published studies reinforced our findings on the “west–east component” genetic pattern and the predicted future northern corridor for A. paludum. Our study provided a detailed paradigm from a phylogeographic perspective of how transcontinental temperate species differ from cold-adapted taxa in their response to climate warming.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Juanjuan Yuan
- College of Life Sciences, Zaozhuang University, 1 Beian Road, Shandong 277000, China
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Gavril Marius Berchi
- Department of Taxonomy & Ecology, Faculty of Biology & Geology, Babeş-Bolyai University, 5-7 Clinicilor Street, 400015 Cluj-Napoca, Romania.,Institute for Advanced Environmental Research, West University of Timișoara, 4 Oituz Street, 300086 Timișoara, Romania
| | - Fabio Cianferoni
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.,Zoology, "La Specola", Natural History Museum, University of Florence, Via Romana 17, I-50125 Florence, Italy
| | - Matthew R Pintar
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Horea Olosutean
- Applied Ecology Research Center, Lucian Blaga University of Sibiu, 5-7 Ion Ratiu Street, 550012 Sibiu, Romania
| | - Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Yang
- School of Sports, Taiyuan University of Science and Technology, 66 Waliu Road, Shanxi 030024, China
| | - Siying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
34
|
Abstract
How do mutational biases influence the process of adaptation? A common assumption is that selection alone determines the course of adaptation from abundant preexisting variation. Yet, theoretical work shows broad conditions under which the mutation rate to a given type of variant strongly influences its probability of contributing to adaptation. Here we introduce a statistical approach to analyzing how mutation shapes protein sequence adaptation. Using large datasets from three different species, we show that the mutation spectrum has a proportional influence on the types of changes fixed in adaptation. We also show via computer simulations that a variety of factors can influence how closely the spectrum of adaptive substitutions reflects the spectrum of variants introduced by mutation. Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a distribution for types of changes fixed in adaptation. Recent work establishes that the changes involved in adaptation reflect common types of mutations, raising the question of how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three large datasets covering thousands of amino acid changes identified in natural and experimental adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. Using species-specific mutation spectra based on prior knowledge, we find that the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately recover the species-specific mutation spectra. However, we also find that the predictive power of the model differs substantially between the three species. To better understand these differences, we use population simulations to explore the factors that influence how closely the spectrum of adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the mutation spectrum decreases with increasing mutational supply (Nμ) and that predictive power is strongly affected by the number and diversity of beneficial mutations.
Collapse
|
35
|
Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 GENES|GENOMES|GENETICS 2022; 12:6407146. [PMID: 34849777 PMCID: PMC8727991 DOI: 10.1093/g3journal/jkab364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023]
Abstract
DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
- Faculdade de Ciência da Universidade de Lisboa (FCUL), CE3C—Centre for Ecology, Evolution and Environmental Changes, 1749-016 Lisboa, Portugal
| | - Thaddeus C Deiss
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
36
|
Ho EKH, Schaack S. Intraspecific Variation in the Rates of Mutations Causing Structural Variation in Daphnia magna. Genome Biol Evol 2021; 13:6444992. [PMID: 34849778 PMCID: PMC8691059 DOI: 10.1093/gbe/evab241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations that cause structural variation are important sources of genetic variation upon which other evolutionary forces can act, however, they are difficult to observe and therefore few direct estimates of their rate and spectrum are available. Understanding mutation rate evolution, however, requires adding to the limited number of species for which direct estimates are available, quantifying levels of intraspecific variation in mutation rates, and assessing whether rate estimates co-vary across types of mutation. Here, we report structural variation-causing mutation rates (svcMRs) for six categories of mutations (short insertions and deletions, long deletions and duplications, and deletions and duplications at copy number variable sites) from nine genotypes of Daphnia magna collected from three populations in Finland, Germany, and Israel using a mutation accumulation approach. Based on whole-genome sequence data and validated using simulations, we find svcMRs are high (two orders of magnitude higher than base substitution mutation rates measured in the same lineages), highly variable among populations, and uncorrelated across categories of mutation. Furthermore, to assess the impact of scvMRs on the genome, we calculated rates while adjusting for the lengths of events and ran simulations to determine if the mutations occur in genic regions more or less frequently than expected by chance. Our results pose a challenge to most prevailing theories aimed at explaining the evolution of the mutation rate, underscoring the importance of obtaining additional mutation rate estimates in more genotypes, for more types of mutation, in more species, in order to improve our future understanding of mutation rates, their variation, and their evolution.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
37
|
Johri P, Charlesworth B, Howell EK, Lynch M, Jensen JD. Revisiting the notion of deleterious sweeps. Genetics 2021; 219:iyab094. [PMID: 34125884 PMCID: PMC9101445 DOI: 10.1093/genetics/iyab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites-both in the presence and absence of interference amongst deleterious mutations-and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma K Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
38
|
Snyman M, Huynh TV, Smith MT, Xu S. The genome-wide rate and spectrum of EMS-induced heritable mutations in the microcrustacean Daphnia: on the prospect of forward genetics. Heredity (Edinb) 2021; 127:535-545. [PMID: 34667306 DOI: 10.1038/s41437-021-00478-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Forward genetic screening using the alkylating mutagen ethyl methanesulfonate (EMS) is an effective method for identifying phenotypic mutants of interest, which can be further genetically dissected to pinpoint the causal genetic mutations. An accurate estimate of the rate of EMS-induced heritable mutations is fundamental for determining the mutant sample size of a screening experiment that aims to saturate all the genes in a genome with mutations. This study examines the genome-wide EMS-induced heritable base-substitutions in three species of the freshwater microcrustacean Daphnia to help guide screening experiments. Our results show that the 10 mM EMS treatment induces base substitutions at an average rate of 1.17 × 10-6/site/generation across the three species, whereas a significantly higher average mutation rate of 1.75 × 10-6 occurs at 25 mM. The mutation spectrum of EMS-induced base substitutions at both concentration is dominated by G:C to A:T transitions. Furthermore, we find that female Daphnia exposed to EMS (F0 individuals) can asexually produce unique mutant offspring (F1) for at least 3 consecutive broods, suggestive of multiple broods as F1 mutants. Lastly, we estimate that about 750 F1s are needed for all genes in the Daphnia genome to be mutated at least once with a 95% probability. We also recommend 4-5 F2s should be collected from each F1 mutant through sibling crossing so that all induced mutations could appear in the homozygous state in the F2 population at 70-80% probability.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Trung V Huynh
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Matthew T Smith
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
39
|
Waneka G, Svendsen JM, Havird JC, Sloan DB. Mitochondrial mutations in Caenorhabditis elegans show signatures of oxidative damage and an AT-bias. Genetics 2021; 219:6346985. [PMID: 34849888 DOI: 10.1093/genetics/iyab116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| |
Collapse
|
40
|
Phillips MA, Steenwyk JL, Shen XX, Rokas A. Examination of Gene Loss in the DNA Mismatch Repair Pathway and Its Mutational Consequences in a Fungal Phylum. Genome Biol Evol 2021; 13:evab219. [PMID: 34554246 PMCID: PMC8597960 DOI: 10.1093/gbe/evab219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The DNA mismatch repair (MMR) pathway corrects mismatched bases produced during DNA replication and is highly conserved across the tree of life, reflecting its fundamental importance for genome integrity. Loss of function in one or a few MMR genes can lead to increased mutation rates and microsatellite instability, as seen in some human cancers. Although loss of MMR genes has been documented in the context of human disease and in hypermutant strains of pathogens, examples of entire species and species lineages that have experienced substantial MMR gene loss are lacking. We examined the genomes of 1,107 species in the fungal phylum Ascomycota for the presence of 52 genes known to be involved in the MMR pathway of fungi. We found that the median ascomycete genome contained 49/52 MMR genes. In contrast, four closely related species of obligate plant parasites from the powdery mildew genera Erysiphe and Blumeria, have lost between five and 21 MMR genes, including MLH3, EXO1, and DPB11. The lost genes span MMR functions, include genes that are conserved in all other ascomycetes, and loss of function of any of these genes alone has been previously linked to increased mutation rate. Consistent with the hypothesis that loss of these genes impairs MMR pathway function, we found that powdery mildew genomes with higher levels of MMR gene loss exhibit increased numbers of mononucleotide runs, longer microsatellites, accelerated sequence evolution, elevated mutational bias in the A|T direction, and decreased GC content. These results identify a striking example of macroevolutionary loss of multiple MMR pathway genes in a eukaryotic lineage, even though the mutational outcomes of these losses appear to resemble those associated with detrimental MMR dysfunction in other organisms.
Collapse
Affiliation(s)
| | | | - Xing-Xing Shen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, USA
| |
Collapse
|
41
|
Jiang P, Ollodart AR, Sudhesh V, Herr AJ, Dunham MJ, Harris K. A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. eLife 2021; 10:68285. [PMID: 34523420 PMCID: PMC8497059 DOI: 10.7554/elife.68285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although studies of Saccharomyces cerevisiae have provided many insights into mutagenesis and DNA repair, most of this work has focused on a few laboratory strains. Much less is known about the phenotypic effects of natural variation within S. cerevisiae’s DNA repair pathways. Here, we use natural polymorphisms to detect historical mutation spectrum differences among several wild and domesticated S. cerevisiae strains. To determine whether these differences are likely caused by genetic mutation rate modifiers, we use a modified fluctuation assay with a CAN1 reporter to measure de novo mutation rates and spectra in 16 of the analyzed strains. We measure a 10-fold range of mutation rates and identify two strains with distinctive mutation spectra. These strains, known as AEQ and AAR, come from the panel’s ‘Mosaic beer’ clade and share an enrichment for C > A mutations that is also observed in rare variation segregating throughout the genomes of several Mosaic beer and Mixed origin strains. Both AEQ and AAR are haploid derivatives of the diploid natural isolate CBS 1782, whose rare polymorphisms are enriched for C > A as well, suggesting that the underlying mutator allele is likely active in nature. We use a plasmid complementation test to show that AAR and AEQ share a mutator allele in the DNA repair gene OGG1, which excises 8-oxoguanine lesions that can cause C > A mutations if left unrepaired.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Anja R Ollodart
- Department of Genome Sciences, University of Washington, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Vidha Sudhesh
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Alan J Herr
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, United States.,Department of Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
42
|
López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD, Kraemer SA, Böndel KB, Ness RW, Colegrave N, Keightley PD. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. Mol Biol Evol 2021; 38:3709-3723. [PMID: 33950243 PMCID: PMC8383909 DOI: 10.1093/molbev/msab140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jobran Chebib
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Katharina B Böndel
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Krasovec M. The spontaneous mutation rate of Drosophila pseudoobscura. G3 GENES|GENOMES|GENETICS 2021; 11:6265464. [PMID: 33950174 PMCID: PMC8495931 DOI: 10.1093/g3journal/jkab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
Abstract
The spontaneous mutation rate is a very variable trait that is subject to drift, selection and is sometimes highly plastic. Consequently, its variation between close species, or even between populations from the same species, can be very large. Here, I estimated the spontaneous mutation rate of Drosophila pseudoobscura and Drosophila persimilis crosses to explore the mutation rate variation within the Drosophila genus. All mutation rate estimations in Drosophila varied fourfold, probably explained by the sensitivity of the mutation rate to environmental and experimental conditions. Moreover, I found a very high mutation rate in the hybrid cross between D. pseudoobscura and D. persimilis, in agreement with known elevated mutation rate in hybrids. This mutation rate increase can be explained by heterozygosity and fitness decrease effects in hybrids.
Collapse
Affiliation(s)
- Marc Krasovec
- CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| |
Collapse
|
44
|
Walton W, Stone GN, Lohse K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol Ecol 2021; 30:4538-4550. [PMID: 34252238 DOI: 10.1111/mec.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Signatures of past changes in population size have been detected in genome-wide variation in many species. However, the causes of such demographic changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely documented, it is unclear whether refugial populations of co-distributed species have experienced shared histories of population size change. We analyse whole-genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). For four of these species, we find support for large changes in effective population size (Ne ) through the Pleistocene that coincide with major climate events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories in this guild are largely idiosyncratic, even at the scale of a single glacial refugium.
Collapse
Affiliation(s)
- William Walton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
45
|
Ilyasov RA, Han GY, Lee ML, Kim KW, Park JH, Takahashi JI, Kwon HW, Nikolenko AG. Phylogenetic Relationships among Honey Bee Subspecies Apis mellifera caucasia and Apis mellifera
carpathica Based on the Sequences of the Mitochondrial Genome. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021; 12:4044. [PMID: 34193872 PMCID: PMC8245649 DOI: 10.1038/s41467-021-24364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
What determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing. How natural selection shapes the rate and molecular spectrum of mutations is debated. Yeast mutation accumulation experiments identify a gene promoting mutagenesis and show stabilizing selection maintaining the mutation rate above the drift barrier. Selection also preserves the mutation spectrum.
Collapse
|
47
|
Alexandrov ID, Alexandrova MV. The dose-, LET-, and gene-dependent patterns of DNA changes underlying the point mutations in spermatozoa of Drosophila melanogaster. I. Autosomal gene black. Mutat Res 2021; 823:111755. [PMID: 34217017 DOI: 10.1016/j.mrfmmm.2021.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Sequence analysis of 7 spontaneous, 27 γ-ray- and 20 neutron/neutron+γ-ray-induced black (b) point mutants was carried out. All these mutants were isolated as non-mosaic transmissible recessive visibles in the progeny of irradiated males from the wild-type high-inbred laboratory D32 strain of Drosophila melanogaster. Among spontaneous mutants, there were two (28.5 %) mutants with copia insertion in intron 1 and exon 2, three (42.8 %) with replacement of b+D32 paternal sequence with maternal b1 sequence (gene conversion), one (14.3 %) with 142-bp-long insertion in exon 2, and one (14.3 %) with a short deletion and two single-base substitutions in exon 3. Among γ-ray-induced mutants, there were 1 (3.7 %) with copia insertion in intron 2, 6 (22.2 %) with gene conversion, and the remaining 20 (74.1 %) mutants had 37 different small-scale DNA changes. There were 20 (54.1 %) single- or double-base substitutions, 7 (18.9 %) frameshifts (indels), 9 (24.3 %) extended deletions or insertions, and 1(2.7 %) mutant with a short insertion instead of a short deletion. Remarkably, clusters of independent small-scale changes inside the gene or within one DNA helical turn were recovered. The spectrum of DNA changes in 20 neutron/ neutron+γ-ray-induced mutants was drastically different from that induced by γ-rays in that 18 (90.0 %) mutants had the b1sequence. In addition, 2 (10.0 %) with gene conversion had 600- or 19-bp-long deletion in exon 3 and 1 (5.0 %) mutant with a short insertion instead of a short deletion. Analysis of all 27 mutants with gene conversion events shows that 20 (74.1 %) had full b1 sequence whereas 7 others (25.9 %) contained a partial b1 sequence. These data are the first experimental evidence for gene conversion in the early stages of animal embryogenesis in the first diploid cleavage nucleus after male and female pronuclei have united. The gene conversion, frameshifts (indels), and deletions between short repeats were considered as products of a relevant DNA repair pathways described in the literature. As the first step, the gametic doubling doses for phenotypic black point mutations and for intragenic base substitution mutations in mature sperm cells irradiated by 40 Gy of γ-rays were estimated as 5.8 and 1.2 Gy, respectively, showing that doubling dose for mutations at the molecular level is about 5 times lower than that at the phenotypic level.
Collapse
Affiliation(s)
- I D Alexandrov
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia.
| | - M V Alexandrova
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980, Dubna, Moscow Region, Russia
| |
Collapse
|
48
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
49
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
50
|
Silliman K, Indorf JL, Knowlton N, Browne WE, Hurt C. Base-substitution mutation rate across the nuclear genome of Alpheus snapping shrimp and the timing of isolation by the Isthmus of Panama. BMC Ecol Evol 2021; 21:104. [PMID: 34049492 PMCID: PMC8164322 DOI: 10.1186/s12862-021-01836-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background The formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. Results To estimate the genome-wide neutral mutation rate (µ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. A range of bioinformatic filtering parameters were evaluated in order to minimize potential bias in mutation rate estimates that may result from SNP filtering. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated µ to be 2.64E−9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. Post-divergence gene flow was detected in one species pair. Failure to account for this post-split migration inflates our substitution rate estimates, emphasizing the importance of demographic methods that can accommodate gene flow. Conclusions Results from our study, both parameter estimates and bioinformatic explorations, have broad-ranging implications for phylogeographic studies in other non-model taxa using reduced representation datasets. Our best estimate of µ that accounts for coalescent and demographic processes is remarkably similar to experimentally derived mutation rates in model arthropod systems. These results contradicted recent suggestions that the closure of the Isthmus was completed much earlier (around 10 Ma), as mutation rates based on an early calibration resulted in uncharacteristically low genomic mutation rates. Also, stricter filtering parameters resulted in biased datasets that generated lower mutation rate estimates and influenced demographic parameters, serving as a cautionary tale for the adherence to conservative bioinformatic strategies when generating reduced-representation datasets at the species level. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01836-3.
Collapse
Affiliation(s)
- Katherine Silliman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA. .,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Jane L Indorf
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Carla Hurt
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.,Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA
| |
Collapse
|