1
|
Otsuki L, Plattner SA, Taniguchi-Sugiura Y, Falcon F, Tanaka EM. Molecular basis of positional memory in limb regeneration. Nature 2025:10.1038/s41586-025-09036-5. [PMID: 40399677 DOI: 10.1038/s41586-025-09036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
The amputation of a salamander limb triggers anterior and posterior connective tissue cells to form distinct signalling centres that together fuel regeneration1. Anterior and posterior identities are established during development and are thought to persist for the whole life in the form of positional memory2. However, the molecular basis of positional memory and whether positional memory can be altered remain unknown. Here, we identify a positive-feedback loop that is responsible for posterior identity in the limb of an axolotl (Ambystoma mexicanum). Posterior cells express residual Hand2 transcription factor from development, and this primes them to form a Shh signalling centre after limb amputation. During regeneration, Shh signalling is also upstream of Hand2 expression. After regeneration, Shh is shut down but Hand2 is sustained, safeguarding posterior memory. We used this regeneration circuitry to convert anterior cells to a posterior-cell memory state. Transient exposure of anterior cells to Shh during regeneration kick-started an ectopic Hand2-Shh loop, leading to stable Hand2 expression and lasting competence to express Shh. Our results implicate positive-feedback in the stability of positional memory and reveal that positional memory is reprogrammed more easily in one direction (anterior to posterior) than in the other. Modifying positional memory in regenerative cells changes their signalling outputs, which has implications for tissue engineering.
Collapse
Affiliation(s)
- L Otsuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - S A Plattner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Y Taniguchi-Sugiura
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - F Falcon
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - E M Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Romero RD, de Souza FSJ. Evolution of Pineal Nonvisual Opsins in Lizards and the Tuatara and Identification of Lepidopsin: A New Opsin Gene. Genome Biol Evol 2025; 17:evaf058. [PMID: 40312047 PMCID: PMC12043008 DOI: 10.1093/gbe/evaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Many lizards (Squamata), as well as the tuatara (Rhynchocephalia), are distinguished among vertebrate groups for the presence of the parietal eye, or "third eye", a structure derived from the pineal complex containing a simplified retina with photoreceptor cells. The parietal eye expresses nonvisual opsins that differ from the visual opsin repertoire of the lateral eyes. These are pinopsin (OPNP), parapinopsin (OPNPP), and parietopsin (OPNPT), all being evolutionary close to visual opsins. Here, we searched over 60 lepidosaurian genomes for pineal nonvisual opsins to check for the evolutionary trajectory of these genes in reptiles. Unexpectedly, we identified a novel opsin gene, which we termed "lepidopsin" (OPNLEP), that is present solely in the genomes of the tuatara and most lizard groups but absent from other vertebrates. Remnants of the gene are found in the coelacanth and some ray-finned fishes, implying that OPNLEP is an ancient opsin that has been repeatedly lost during vertebrate evolution. We found that the tuatara and most lizards of the Iguania, Anguimorpha, Scincoidea, and Lacertidae clades, which possess a parietal eye, harbor all pineal opsin genes. Lizards missing the parietal eye, like geckos, teiids, and a fossorial amphisbaenian, lack most or all pineal nonvisual opsins. In summary, our survey of pineal nonvisual opsins reveals (i) the persistence of a previously unknown ancient opsin gene-OPNLEP-in lepidosaurians; (ii) losses of nonvisual opsins in specific lizard clades; and (iii) a correlation between the presence of a parietal eye and the genomic repertoire of pineal nonvisual opsins.
Collapse
Affiliation(s)
- Ricardo D Romero
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FBMC-FCEyN-UBA), Buenos Aires, Argentina
| | - Flávio S J de Souza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FBMC-FCEyN-UBA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Jia X, Wei J, Chen Y, Zeng C, Deng C, Zeng P, Tang Y, Zhou Q, Huang Y, Zhu Q. Codon usage patterns and genomic variation analysis of chloroplast genomes provides new insights into the evolution of Aroideae. Sci Rep 2025; 15:4333. [PMID: 39910236 PMCID: PMC11799533 DOI: 10.1038/s41598-025-88244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Aroideae is an important subfamily of the Araceae family and contains many plants with medicinal and edible value. It is difficult to identify and classify Aroideae species accurately on the basis of morphology alone because of their polymorphic phenotypic traits. The chloroplast genome (CPG) is useful for studying on plant taxonomy and phylogeny, and the analysis of codon usage bias (CUB) in CPGs provides further insights into the intricate phylogenetic relationships among Aroideae. The results showed that the codon third position of the chloroplast genome coding sequence in Aroideae was rich in A and T, with a GC content of 37.91%. The ENC-plot and PR2-plot revealed that the codon usage bias of Aroideae was influenced by multiple factors, with natural selection as the dominant factor. Thirteen to twenty optimal codons ending in A/T were identified in 61 Aroideae species. Additionally, the comparative analysis of CPGs revealed that two single copy regions and non-coding regions were variable in Aroideae. Eight highly divergent regions (Pi > 0.064) were identified (ndhF, rpl32, ccsA, ndhE, ndhG, ndhF-rpl32, ccsA-ndhD, and ndhE-ndhG) , in which ndhE have the potential to serve as a reliable DNA marker to discriminate chloroplasts in Aroideae subfamily. Furthermore, the maximum likelihood-based phylogenetic trees constructed from complete chloroplast genomes and protein-coding sequences presented similar topologies. Principal component clustering analysis based on relative synonymous codon usage values (RSCUs) revealed that Calla was clearly deviated from Montrichardia and Anubias, and that Alocasia was closer to Colocasieae than to Arisaemateae. These findings suggest that the use of RSCU for clustering analysis could offer new theoretical support for species classification and evolution. Our research could provide a theoretical foundation for the chloroplast genetic engineering, taxonomy, and phylogenetic relationships of Aroideae chloroplasts.
Collapse
Affiliation(s)
- Xinbi Jia
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiaqi Wei
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuewen Chen
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chenghong Zeng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chan Deng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pengchen Zeng
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yufei Tang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjin Huang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Qianglong Zhu
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
5
|
Zimmermann W, Kammerer R. Evolution of CEACAM pathogen decoy receptors in primates. Eur J Clin Invest 2024; 54 Suppl 2:e14356. [PMID: 39674876 DOI: 10.1111/eci.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND CEACAM1 in leukocytes controls cell activation during inflammation. This and its expression in epithelial cells led to frequent independent appropriation of CEACAM1 as receptor by pathogens in humans and other species to gain host access and to downregulate its immune response. As a countermeasure, decoy receptors with CEACAM1-like pathogen-binding domains evolved. The granulocyte-specific human CEACAM3 endocytic receptor diverts CEACAM1-binding pathogens to neutrophils for internalization and destruction. The role of the glycosylphosphatidylinositol-anchored CEACAM5 and CEACAM6 which can also bind CEACAM1-targeting pathogens in humans is less clear. METHODS We analyzed the selection of CEACAMs to avoid pathogen binding and to maintain similarity between pathogen receptors and decoy receptors in 148 primate species. RESULTS Notably, functional CEACAM3 genes were not found in gibbons and New World monkeys. Interestingly, CEACAM6 in these primates exhibits similar high ratios of rates of nonsynonymous and synonymous substitution (dN/dS) in their pathogen-binding N domain exons as found for CEACAM1. High dN/dS ratios are indicative of selection for diversification typically seen in pathogen receptors. Human CEACAM6 is expressed on granulocytes and epithelial cells. Therefore, CEACAM6 could substitute for the missing endocytic receptor CEACAM3. In nearly all investigated primate groups also N exons of the epithelially expressed CEACAM5 exhibit selection for diversification. In African populations, five high-frequency polymorphisms are observed in the pathogen-binding region of CEACAM5 (I80V, V83A, I100T, I112V, I113T) with 3-4 polymorphisms combined in the same individual. These polymorphisms correspond to CEACAM1 pathogen-binding domain sequences. CONCLUSION The glycosylphosphatidylinositol-anchored CEACAM5 and CEACAM6 are under selection to maintain similarity to the pathogen receptor CEACAM1 in most primate species, indicating a function as decoy receptors.
Collapse
Affiliation(s)
- Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| |
Collapse
|
6
|
Bruner WS, Grant SFA. Translation of genome-wide association study: from genomic signals to biological insights. Front Genet 2024; 15:1375481. [PMID: 39421299 PMCID: PMC11484060 DOI: 10.3389/fgene.2024.1375481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Since the turn of the 21st century, genome-wide association study (GWAS) have successfully identified genetic signals associated with a myriad of common complex traits and diseases. As we transition from establishing robust genetic associations with diverse phenotypes, the central challenge is now focused on characterizing the underlying functional mechanisms driving these signals. Previous GWAS efforts have revealed multiple variants, each conferring relatively subtle susceptibility, collectively contributing to the pathogenesis of various common diseases. Such variants can further exhibit associations with multiple other traits and differ across ancestries, plus disentangling causal variants from non-causal due to linkage disequilibrium complexities can lead to challenges in drawing direct biological conclusions. Combined with cellular context considerations, such challenges can reduce the capacity to definitively elucidate the biological significance of GWAS signals, limiting the potential to define mechanistic insights. This review will detail current and anticipated approaches for functional interpretation of GWAS signals, both in terms of characterizing the underlying causal variants and the corresponding effector genes.
Collapse
Affiliation(s)
- Winter S. Bruner
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Struan F. A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
7
|
Antonacci R, Giannico F, Moschetti R, Pala A, Jambrenghi AC, Massari S. A Comprehensive Analysis of the Genomic and Expressed Repertoire of the T-Cell Receptor Beta Chain in Equus caballus. Animals (Basel) 2024; 14:2817. [PMID: 39409766 PMCID: PMC11475548 DOI: 10.3390/ani14192817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified. The general genomic organization resembles that of other mammals, with a V cluster of 135 TRBV genes located upstream of two in-tandem aligned TRBD-J-C clusters and an inverted TRBV gene at the 3' end of the last TRBC gene. However, the horse b-chain repertoire would be affected by a high number of non-functional TRBV genes. Thus, we queried a transcriptomic dataset derived from splenic tissue of a healthy adult horse, using each TRBJ gene as a probe to analyze clonotypes encompassing the V(D)J junction. This analysis provided insights into the usage of the TRBV, TRBD, and TRBJ genes and the variability of the non-germline-encoded CDR3. Our results clearly demonstrated that the horse β-chain constitutes a complex level of variability, broadly like that described in other mammalian species.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70010 Bari, Italy;
| | - Roberta Moschetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Angela Pala
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Anna Caputi Jambrenghi
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
8
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Göttgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. Genome Res 2024; 34:1089-1105. [PMID: 38951027 PMCID: PMC11368181 DOI: 10.1101/gr.277950.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
Affiliation(s)
- Guanjue Xiang
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Xi He
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kathryn J Isaac
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Camden Jansen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander Q Wixom
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - April Cockburn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amber Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yanghua He
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaìi at Mānoa, Honolulu, Hawaii 96822, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jens Lichtenberg
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Elisabeth F Heuston
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Stacie M Anderson
- Flow Cytometry Core, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Jing Luan
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marit W Vermunt
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60611, USA
| | - Michael E G Sauria
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerd A Blobel
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qunhua Li
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Gottgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535219. [PMID: 37066352 PMCID: PMC10103973 DOI: 10.1101/2023.04.02.535219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
|
10
|
Tang F, Jiao B, Zhang M, He M, Su R, Luo K, Lan T. PtoMYB031, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar. FRONTIERS IN PLANT SCIENCE 2024; 14:1341245. [PMID: 38298604 PMCID: PMC10828011 DOI: 10.3389/fpls.2023.1341245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
Introduction The biosynthesis of the secondary cell wall (SCW) is orchestrated by an intricate hierarchical transcriptional regulatory network. This network is initiated by first-layer master switches, SCW-NAC transcription factors, which in turn activate the second-layer master switches MYBs. These switches play a crucial role in regulating xylem specification and differentiation during SCW formation. However, the roles of most MYBs in woody plants are yet to be fully understood. Methods In this study, we identified and isolated the R2R3-MYB transcription factor, PtoMYB031, from Populus tomentosa. We explored its expression, mainly in xylem tissues, and its role as a transcriptional repressor in the nucleus. We used overexpression and RNA interference techniques in poplar, along with Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, to analyze the regulatory effects of PtoMYB031. Results Overexpression of PtoMYB031 in poplar significantly reduced lignin, cellulose, and hemicellulose content, and inhibited vascular development in stems, resulting in decreased SCW thickness in xylem tissues. Gene expression analysis showed that structural genes involved in SCW biosynthesis were downregulated in PtoMYB031-OE lines. Conversely, RNA interference of PtoMYB031 increased these compounds. Additionally, PtoMYB031 was found to recruit the repressor PtoZAT11, forming a transcriptional inhibition complex. Discussion Our findings provide new insights into how PtoMYB031, through its interaction with PtoZAT11, forms a complex that can suppress the expression of key regulatory genes, PtoWND1A and PtoWND2B, in SCW biosynthesis. This study enhances our understanding of the transcriptional regulation involved in SCW formation in poplar, highlighting the significant role of PtoMYB031.
Collapse
Affiliation(s)
- Feng Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Ruiying Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Olivares-Costa M, Oyarzún GM, Verbel-Vergara D, González MP, Arancibia D, Andrés ME, Opazo JC. Evolution of lysine-specific demethylase 1 and REST corepressor gene families and their molecular interaction. Commun Biol 2023; 6:1267. [PMID: 38097664 PMCID: PMC10721905 DOI: 10.1038/s42003-023-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Lysine-specific demethylase 1A (LSD1) binds to the REST corepressor (RCOR) protein family of corepressors to erase transcriptionally active marks on histones. Functional diversity in these complexes depends on the type of RCOR included, which modulates the catalytic activity of the complex. Here, we studied the duplicative history of the RCOR and LSD gene families and analyzed the evolution of their interaction. We found that RCOR genes are the product of the two rounds of whole-genome duplications that occurred early in vertebrate evolution. In contrast, the origin of the LSD genes traces back before to the divergence of animals and plants. Using bioinformatics tools, we show that the RCOR and LSD1 interaction precedes the RCOR repertoire expansion that occurred in the last common ancestor of jawed vertebrates. Overall, we trace LSD1-RCOR complex evolution and propose that animal non-model species offer advantages in addressing questions about the molecular biology of this epigenetic complex.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biomédica, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Gianluca Merello Oyarzún
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Daniel Verbel-Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duxan Arancibia
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - María E Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
12
|
Gätjens-Boniche O, Jiménez-Madrigal JP, Whetten RW, Valenzuela-Diaz S, Alemán-Gutiérrez A, Hanson PE, Pinto-Tomás AA. Microbiome and plant cell transformation trigger insect gall induction in cassava. FRONTIERS IN PLANT SCIENCE 2023; 14:1237966. [PMID: 38126017 PMCID: PMC10731979 DOI: 10.3389/fpls.2023.1237966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by Iatrophobia brasiliensis (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Manihot esculenta Crantz) as our model. PCR-based molecular markers and deep metagenomic sequencing data were employed to analyse the gall microbiome and to test the hypothesis that gall cells are genetically transformed by insect vectored bacteria. A shotgun sequencing discrimination approach was implemented to selectively discriminate between foreign DNA and the reference host plant genome. Several known candidate insertion sequences were identified, the most significant being DNA sequences found in bacterial genes related to the transcription regulatory factor CadR, cadmium-transporting ATPase encoded by the cadA gene, nitrate transport permease protein (nrtB gene), and arsenical pump ATPase (arsA gene). In addition, a DNA fragment associated with ubiquitin-like gene E2 was identified as a potential accessory genetic element involved in gall induction mechanism. Furthermore, our results suggest that the increased quality and rapid development of gall tissue are mostly driven by microbiome enrichment and the acquisition of critical endophytes. An initial gall-like structure was experimentally obtained in M. esculenta cultured tissues through inoculation assays using a Rhodococcus bacterial strain that originated from the inducing insect, which we related to the gall induction process. We provide evidence that the modification of the endophytic microbiome and the genetic transformation of plant cells in M. esculenta are two essential requirements for insect-induced gall formation. Based on these findings and having observed the same potential DNA marker in galls from other plant species (ubiquitin-like gene E2), we speculate that bacterially mediated genetic transformation of plant cells may represent a more widespread gall induction mechanism found in nature.
Collapse
Affiliation(s)
- Omar Gätjens-Boniche
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Jose Pablo Jiménez-Madrigal
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sandro Valenzuela-Diaz
- Human Microbiome Research Program, Faculty of Medicine, The Helsinki University, Helsinki, Finland
| | - Alvaro Alemán-Gutiérrez
- Laboratorio de Biología Molecular, Escuela de Ciencias Naturales y Exactas, Campus Tecnológico Local San Carlos, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
- Laboratorio de Genómica y Biodiversidad, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Paul E. Hanson
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Adrián A. Pinto-Tomás
- Center for Research in Microscopic Structures and Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
13
|
Sackerson C, Garcia V, Medina N, Maldonado J, Daly J, Cartwright R. Comparative analysis of the myoglobin gene in whales and humans reveals evolutionary changes in regulatory elements and expression levels. PLoS One 2023; 18:e0284834. [PMID: 37643191 PMCID: PMC10464968 DOI: 10.1371/journal.pone.0284834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cetacea and other diving mammals have undergone numerous adaptations to their aquatic environment, among them high levels of the oxygen-carrying intracellular hemoprotein myoglobin in skeletal muscles. Hypotheses regarding the mechanisms leading to these high myoglobin levels often invoke the induction of gene expression by exercise, hypoxia, and other physiological gene regulatory pathways. Here we explore an alternative hypothesis: that cetacean myoglobin genes have evolved high levels of transcription driven by the intrinsic developmental mechanisms that drive muscle cell differentiation. We have used luciferase assays in differentiated C2C12 cells to test this hypothesis. Contrary to our hypothesis, we find that the myoglobin gene from the minke whale, Balaenoptera acutorostrata, shows a low level of expression, only about 8% that of humans. This low expression level is broadly shared among cetaceans and artiodactylans. Previous work on regulation of the human gene has identified a core muscle-specific enhancer comprised of two regions, the "AT element" and a C-rich sequence 5' of the AT element termed the "CCAC-box". Analysis of the minke whale gene supports the importance of the AT element, but the minke whale CCAC-box ortholog has little effect. Instead, critical positive input has been identified in a G-rich region 3' of the AT element. Also, a conserved E-box in exon 1 positively affects expression, despite having been assigned a repressive role in the human gene. Last, a novel region 5' of the core enhancer has been identified, which we hypothesize may function as a boundary element. These results illustrate regulatory flexibility during evolution. We discuss the possibility that low transcription levels are actually beneficial, and that evolution of the myoglobin protein toward enhanced stability is a critical factor in the accumulation of high myoglobin levels in adult cetacean muscle tissue.
Collapse
Affiliation(s)
- Charles Sackerson
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Vivian Garcia
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Nicole Medina
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Jessica Maldonado
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - John Daly
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Rachel Cartwright
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
- The Keiki Kohola Project, Lahaina, Hawaii, United States of America
| |
Collapse
|
14
|
Opazo JC, Vandewege MW, Hoffmann FG, Zavala K, Meléndez C, Luchsinger C, Cavieres VA, Vargas-Chacoff L, Morera FJ, Burgos PV, Tapia-Rojas C, Mardones GA. How Many Sirtuin Genes Are Out There? Evolution of Sirtuin Genes in Vertebrates With a Description of a New Family Member. Mol Biol Evol 2023; 40:6993039. [PMID: 36656997 PMCID: PMC9897032 DOI: 10.1093/molbev/msad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.
Collapse
Affiliation(s)
| | - Michael W Vandewege
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Meléndez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Luis Vargas-Chacoff
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Applied Biochemistry Laboratory, Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | | |
Collapse
|
15
|
Hanlon VCT, Lansdorp PM, Guryev V. A survey of current methods to detect and genotype inversions. Hum Mutat 2022; 43:1576-1589. [PMID: 36047337 DOI: 10.1002/humu.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Polymorphic inversions are ubiquitous in humans, and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
16
|
Kille B, Balaji A, Sedlazeck FJ, Nute M, Treangen TJ. Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biol 2022; 23:182. [PMID: 36038949 PMCID: PMC9421119 DOI: 10.1186/s13059-022-02735-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
Collapse
Affiliation(s)
- Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Advait Balaji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
17
|
Tsytsykova AV, Wiley G, Li C, Pelikan RC, Garman L, Acquah FA, Mooers BH, Tsitsikov EN, Dunn IF. Mutated KLF4(K409Q) in meningioma binds STRs and activates FGF3 gene expression. iScience 2022; 25:104839. [PMID: 35996584 PMCID: PMC9391581 DOI: 10.1016/j.isci.2022.104839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that has been proven necessary for both induction and maintenance of pluripotency and self-renewal. Whole-genome sequencing defined a unique mutation in KLF4 (KLF4K409Q) in human meningiomas. However, the molecular mechanism of this tumor-specific KLF4 mutation is unknown. Using genome-wide high-throughput and focused quantitative transcriptional approaches in human cell lines, primary meningeal cells, and meningioma tumor tissue, we found that a change in the evolutionarily conserved DNA-binding domain of KLF4 alters its DNA recognition preference, resulting in a shift in downstream transcriptional activity. In the KLF4K409Q-specific targets, the normally silent fibroblast growth factor 3 (FGF3) is activated. We demonstrated a neomorphic function of KLF4K409Q in stimulating FGF3 transcription through binding to its promoter and in using short tandem repeats (STRs) located within the locus as enhancers.
Collapse
Affiliation(s)
- Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Chuang Li
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Richard C. Pelikan
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK 73104, USA
| | - Francis A. Acquah
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blaine H.M. Mooers
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
19
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
20
|
Lan T, Xiong W, Chen X, Mo B, Tang G. Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:292-318. [PMID: 35000252 DOI: 10.1111/tpj.15667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Standardized naming systems are essential to integrate and unify distinct research fields, and to link multi-species data within and across kingdoms. We conducted a comprehensive survey of cytoplasmic ribosomal proteins (CRPs) in the dicot model Arabidopsis thaliana and the monocot model rice, noting that the standardized naming system has not been widely adopted in the plant community. We generated a database linking the old classical names to their updated and compliant names. We also explored the sequences, molecular evolution, and structural and functional characteristics of all plant CRP families, emphasizing evolutionarily conserved and plant-specific features through cross-kingdom comparisons. Unlike fungal CRP paralogs that were mainly created by whole-genome duplication (WGD) or retroposition under a concerted evolution mode, plant CRP genes evolved primarily through both WGD and tandem duplications in a rapid birth-and-death process. We also provide a web-based resource (http://www.plantcrp.cn/) with the aim of sharing the latest knowledge on plant CRPs and facilitating the continued development of a standardized framework across the entire community.
Collapse
Affiliation(s)
- Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, 49931, MI, USA
| |
Collapse
|
21
|
Li B, Liu T, Ali A, Xiao Y, Shan N, Sun J, Huang Y, Zhou Q, Zhu Q. Complete chloroplast genome sequences of three aroideae species (Araceae): lights into selective pressure, marker development and phylogenetic relationships. BMC Genomics 2022; 23:218. [PMID: 35305558 PMCID: PMC8933883 DOI: 10.1186/s12864-022-08400-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Colocasia gigantea, Caladium bicolor and Xanthosoma sagittifolium are three worldwide famous ornamental and/or vegetable plants in the Araceae family, these species in the subfamily Aroideae are phylogenetically perplexing due to shared interspecific morphological traits and variation. Result This study, for the first time ever, assembled and analyzed complete chloroplast genomes of C. gigantea, C. bicolor and X. sagittifolium with genome sizes of 165,906 bp, 153,149 bp and 165,169 bp in length, respectively. The genomes were composed of conserved quadripartite circular structures with a total of 131 annotated genes, including 8 rRNA, 37 tRNA and 86 protein-coding genes. A comparison within Aroideae showed seven protein-coding genes (accD, ndhF, ndhK, rbcL, rpoC1, rpoC2 and matK) linked to environmental adaptation. Phylogenetic analysis confirmed a close relationship of C. gigantea with C. esculenta and S. colocasiifolia, and the C. bicolor with X. sagittifolium. Furthermore, three DNA barcodes (atpH-atpI + psaC-ndhE, atpH-atpI + trnS-trnG, atpH-atpI + psaC-ndhE + trnS-trnG) harbored highly variable regions to distinguish species in Aroideae subfamily. Conclusion These results would be beneficial for species identification, phylogenetic relationship, genetic diversity, and potential of germplasm resources in Aroideae. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08400-3.
Collapse
|
22
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
23
|
Ha D, Kim D, Kim I, Oh Y, Kong J, Han S, Kim S. Evolutionary rewiring of regulatory networks contributes to phenotypic differences between human and mouse orthologous genes. Nucleic Acids Res 2022; 50:1849-1863. [PMID: 35137181 PMCID: PMC8887464 DOI: 10.1093/nar/gkac050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Abstract
Mouse models have been engineered to reveal the biological mechanisms of human diseases based on an assumption. The assumption is that orthologous genes underlie conserved phenotypes across species. However, genetically modified mouse orthologs of human genes do not often recapitulate human disease phenotypes which might be due to the molecular evolution of phenotypic differences across species from the time of the last common ancestor. Here, we systematically investigated the evolutionary divergence of regulatory relationships between transcription factors (TFs) and target genes in functional modules, and found that the rewiring of gene regulatory networks (GRNs) contributes to the phenotypic discrepancies that occur between humans and mice. We confirmed that the rewired regulatory networks of orthologous genes contain a higher proportion of species-specific regulatory elements. Additionally, we verified that the divergence of target gene expression levels, which was triggered by network rewiring, could lead to phenotypic differences. Taken together, a careful consideration of evolutionary divergence in regulatory networks could be a novel strategy to understand the failure or success of mouse models to mimic human diseases. To help interpret mouse phenotypes in human disease studies, we provide quantitative comparisons of gene expression profiles on our website (http://sbi.postech.ac.kr/w/RN).
Collapse
Affiliation(s)
- Doyeon Ha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | - Youngchul Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Korea
- Institute of Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Korea
| |
Collapse
|
24
|
Rodríguez-Castrejón UE, Serafin-Muñoz AH, Alvarez-Vargas A, Cruz-Jímenez G, Noriega-Luna B. Isolation and molecular identification of native As-resistant bacteria: As(III) and As(V) removal capacity and possible mechanism of detoxification. Arch Microbiol 2022; 204:191. [PMID: 35194697 DOI: 10.1007/s00203-022-02794-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The study of arsenic (As)-resistant microorganisms with high As removal capacity is fundamental for the development of economically sustainable technologies used for the treatment of water contaminated with metalloid. In the current study, four bacterial strains were isolated from As-contaminated water samples of the Xichu region, Mexico. Based on 16S rRNA gene sequencing and phylogenetic analysis of the isolated strains, Rhodococcus gordoniae, Microbacterium hydrocarbonoxydans, Exiguobacterium indicum, and Pseudomonas kribbensis were identified as potential As removal strains. R. gordoniae shows the highest growth capacity in both As(III) and As(V). R. gordoniae, M. hydrocarbonoxydans, and E. indicum removed approximately 81.6, 79.9, and 61.7% of As(III), as well as 77.2, 68.9, and 74.8% of As(V), respectively. P. kribbensis removed only about 80.2% of As(V). This study contributes to the possible detoxification mechanisms employed by these bacteria. Such insight could be crucial in the successful implementation of in situ bioremediation programs using these little-known bacteria.
Collapse
Affiliation(s)
- U E Rodríguez-Castrejón
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - A H Serafin-Muñoz
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico.
| | - A Alvarez-Vargas
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - G Cruz-Jímenez
- Division of Natural and Exact Sciences, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| | - B Noriega-Luna
- Division of Engineering, Guanajuato Campus of the University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
25
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Linguiti G, Giannico F, D’Addabbo P, Pala A, Caputi Jambrenghi A, Ciccarese S, Massari S, Antonacci R. The Organization of the Pig T-Cell Receptor γ (TRG) Locus Provides Insights into the Evolutionary Patterns of the TRG Genes across Cetartiodactyla. Genes (Basel) 2022; 13:genes13020177. [PMID: 35205222 PMCID: PMC8872565 DOI: 10.3390/genes13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
The domestic pig (Sus scrofa) is a species representative of the Suina, one of the four suborders within Cetartiodactyla. In this paper, we reported our analysis of the pig TRG locus in comparison with the loci of species representative of the Ruminantia, Tylopoda, and Cetacea suborders. The pig TRG genomic structure reiterates the peculiarity of the organization of Cetartiodactyla loci in TRGC “cassettes”, each containing the basic V-J-J-C unit. Eighteen genes arranged in four TRGC cassettes, form the pig TRG locus. All the functional TRG genes were expressed, and the TRGV genes preferentially rearrange with the TRGJ genes within their own cassette, which correlates the diversity of the γ-chain repertoire with the number of cassettes. Among them, the TRGC5, located at the 5′ end of the locus, is the only cassette that retains a marked homology with the corresponding TRGC cassettes of all the analyzed species. The preservation of the TRGC5 cassette for such a long evolutionary time presumes a highly specialized function of its genes, which could be essential for the survival of species. Therefore, the maintenance of this cassette in pigs confirms that it is the most evolutionarily ancient within Cetartiodactyla, and it has undergone a process of duplication to give rise to the other TRGC cassettes in the different artiodactyl species in a lineage-specific manner.
Collapse
Affiliation(s)
- Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (G.L.); (P.D.); (A.P.); (S.C.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Strada Provincial 62 per Casamassima Km 3, 70010 Bari, Italy;
| | - Pietro D’Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (G.L.); (P.D.); (A.P.); (S.C.)
| | - Angela Pala
- Department of Biology, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (G.L.); (P.D.); (A.P.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (G.L.); (P.D.); (A.P.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (G.L.); (P.D.); (A.P.); (S.C.)
- Correspondence:
| |
Collapse
|
27
|
Terán LC, Mortera P, Tubio G, Alarcón SH, Blancato VS, Espariz M, Esteban L, Magni C. Genomic analysis revealed conserved acid tolerance mechanisms from native micro-organisms in fermented feed. J Appl Microbiol 2021; 132:1152-1165. [PMID: 34487594 DOI: 10.1111/jam.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
AIMS Fermented feed is an agricultural practice used in many regions of the world to improve the growth performance of farm animals. This study aimed to identify and evaluate the lactic acid bacteria and yeast involved in the production of fermented feed. METHODS AND RESULTS We isolated and described two micro-organisms from autochthonous microbiota origin present in a regional feed product, Lactobacillus paracasei IBR07 (Lacticaseibacillus paracasei) and Kazachstania unispora IBR014 (Saccharomyces unisporum). Genome sequence analyses were performed to characterize both micro-organisms. Potential pathways involved in the acid response, tolerance and persistence were predicted in both genomes. Although L. paracasei and K. unispora are considered safe for animal feed, we analysed the presence of virulence factors, antibiotic resistance and pathogenicity islands. Furthermore, the Galleria mellonella model was used to support the safety of both isolates. CONCLUSIONS We conclude that IBR07 and IBR014 strains are good candidates to be used as starter cultures for feed fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY The data presented here will be helpful to explore other biotechnological aspects and constitute a starting point for further studies to establish the consumption benefit of fermented feed in farm animal production.
Collapse
Affiliation(s)
- Lucrecia C Terán
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Centro de Referencia para Lactobacilos, CERELA-CONICET, San Miguel de Tucuman, Tucumán, Argentina
| | - Pablo Mortera
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Gisela Tubio
- Instituto de Procesos Biotecnológicos y Químicos Rosario, IPROByQ (CONICET-UNR), Rosario, Argentina
| | - Sergio H Alarcón
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Instituto de Química de Rosario, IQUIR (CONICET-UNR), Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, FBioyF-UNR, Rosario, Argentina
| | - Luis Esteban
- Química Biológica, Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| |
Collapse
|
28
|
Shah A, Ratkowski M, Rosa A, Feinstein P, Bozza T. Olfactory expression of trace amine-associated receptors requires cooperative cis-acting enhancers. Nat Commun 2021; 12:3797. [PMID: 34145232 PMCID: PMC8213819 DOI: 10.1038/s41467-021-23824-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.
Collapse
Affiliation(s)
- Ami Shah
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Madison Ratkowski
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessandro Rosa
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Paul Feinstein
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
29
|
Hao M, Yang W, Lu W, Sun L, Shoaib M, Sun J, Liu D, Li X, Zhang A. Characterization of the Mitochondrial Genome of a Wheat AL-Type Male Sterility Line and the Candidate CMS Gene. Int J Mol Sci 2021; 22:6388. [PMID: 34203740 PMCID: PMC8232308 DOI: 10.3390/ijms22126388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.
Collapse
Affiliation(s)
- Miaomiao Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwen Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| |
Collapse
|
30
|
Kulski JK, Suzuki S, Shiina T. Haplotype Shuffling and Dimorphic Transposable Elements in the Human Extended Major Histocompatibility Complex Class II Region. Front Genet 2021; 12:665899. [PMID: 34122517 PMCID: PMC8193847 DOI: 10.3389/fgene.2021.665899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The major histocompatibility complex (MHC) on chromosome 6p21 is one of the most single-nucleotide polymorphism (SNP)-dense regions of the human genome and a prime model for the study and understanding of conserved sequence polymorphisms and structural diversity of ancestral haplotypes/conserved extended haplotypes. This study aimed to follow up on a previous analysis of the MHC class I region by using the same set of 95 MHC haplotype sequences downloaded from a publicly available BioProject database at the National Center for Biotechnology Information to identify and characterize the polymorphic human leukocyte antigen (HLA)-class II genes, the MTCO3P1 pseudogene alleles, the indels of transposable elements as haplotypic lineage markers, and SNP-density crossover (XO) loci at haplotype junctions in DNA sequence alignments of different haplotypes across the extended class II region (∼1 Mb) from the telomeric PRRT1 gene in class III to the COL11A2 gene at the centromeric end of class II. We identified 42 haplotypic indels (20 Alu, 7 SVA, 13 LTR or MERs, and 2 indels composed of a mosaic of different transposable elements) linked to particular HLA-class II alleles. Comparative sequence analyses of 136 haplotype pairs revealed 98 unique XO sites between SNP-poor and SNP-rich genomic segments with considerable haplotype shuffling located in the proximity of putative recombination hotspots. The majority of XO sites occurred across various regions including in the vicinity of MTCO3P1 between HLA-DQB1 and HLA-DQB3, between HLA-DQB2 and HLA-DOB, between DOB and TAP2, and between HLA-DOA and HLA-DPA1, where most XOs were within a HERVK22 sequence. We also determined the genomic positions of the PRDM9-recombination suppression sequence motif ATCCATG/CATGGAT and the PRDM9 recombination activation partial binding motif CCTCCCCT/AGGGGAG in the class II region of the human reference genome (NC_ 000006) relative to published meiotic recombination positions. Both the recombination and anti-recombination PRDM9 binding motifs were widely distributed throughout the class II genomic regions with 50% or more found within repeat elements; the anti-recombination motifs were found mostly in L1 fragmented repeats. This study shows substantial haplotype shuffling between different polymorphic blocks and confirms the presence of numerous putative ancestral recombination sites across the class II region between various HLA class II genes.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
31
|
Lee J, Kim H, Park SG, Hwang H, Yoo SI, Bae W, Kim E, Kim J, Lee HY, Heo TY, Kang KK, Lee Y, Hong CP, Cho H, Ryu H. Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. THE NEW PHYTOLOGIST 2021; 230:1503-1516. [PMID: 33570747 DOI: 10.1111/nph.17265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The tight regulation of local auxin homeostasis and signalling maxima in xylem precursor cells specifies the organising activity of the vascular cambium and consequently promotes xylem differentiation and wood formation. However, the molecular mechanisms underlying the local auxin signalling maxima in the vascular cambium are largely unknown. Here, we reveal that brassinosteroid (BR)-activated WALLS ARE THIN1 (WAT1) facilitates wood formation by enhancing local auxin signalling in the vascular cambium in Solanum lycopersicum. Growth defects and low auxin signalling readouts in the BR-deficient tomato cultivar, Micro-Tom, were associated with a novel recessive allele, Slwat1-copi, created by the insertion of a retrotransposon in the last exon of the SlWAT1 locus. Molecular and genetic studies by generating the gain-of-function and loss-of-function tomato mutants revealed that SlWAT1 is a critical regulator for fine tuning local auxin homeostasis and signalling outputs in vascular cambium to facilitate secondary growth. Finally, we discovered that BR-regulated SlBZR1/2 directly activated downstream auxin responses by SlWAT1 upregulation in xylem precursor cells to facilitate xylem differentiation and subsequent wood formation. Our data suggest that the BR-SlBZR1/2-WAT1 signalling network contributes to the high level of auxin signalling in the vascular cambium for secondary growth.
Collapse
Affiliation(s)
- Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | | | - Hyeona Hwang
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | | | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | - Eunhui Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | - Jaehoon Kim
- Department of Information and Statistics, Chungbuk National University, Cheongju, 28644, Korea
| | - Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju, 28644, Korea
| | - Tae-Young Heo
- Department of Information and Statistics, Chungbuk National University, Cheongju, 28644, Korea
| | - Kwon Kyoo Kang
- Department of Horticulture, Hankyong National University, Ansung, 17579, Korea
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | | | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 28644, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| |
Collapse
|
32
|
The T Cell Receptor (TRB) Locus in Tursiops truncatus: From Sequence to Structure of the Alpha/Beta Heterodimer in the Human/Dolphin Comparison. Genes (Basel) 2021; 12:genes12040571. [PMID: 33919966 PMCID: PMC8070946 DOI: 10.3390/genes12040571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/25/2023] Open
Abstract
The bottlenose dolphin (Tursiops truncatus) belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T. truncatus T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3' end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes. We have analyzed the relevant mature transcripts from two subjects. The simultaneous availability of rearranged T cell receptor α (TRA) and TRB cDNA from the peripheral blood of one of the two specimens, and the human/dolphin amino acids multi-sequence alignments, allowed us to calculate the most likely interactions at the protein interface between the alpha/beta heterodimer in complex with major histocompatibility class I (MH1) protein. Interacting amino acids located in the complementarity-determining region according to IMGT numbering (CDR-IMGT) of the dolphin variable V-alpha and beta domains were identified. According to comparative modelization, the atom pair contact sites analysis between the human MH1 grove (G) domains and the T cell receptor (TR) V domains confirms conservation of the structure of the dolphin TR/pMH.
Collapse
|
33
|
Massari S, Linguiti G, Giannico F, D’Addabbo P, Ciccarese S, Antonacci R. The Genomic Organisation of the TRA/TRD Locus Validates the Peculiar Characteristics of Dromedary δ-Chain Expression. Genes (Basel) 2021; 12:genes12040544. [PMID: 33918850 PMCID: PMC8069558 DOI: 10.3390/genes12040544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
The role of γδ T cells in vertebrate immunity is still an unsolved puzzle. Species such as humans and mice display a low percentage of these T lymphocytes (i.e., “γδ low species”) with a restricted diversity of γδ T cell receptors (TR). Conversely, artiodactyl species (i.e., “γδ high species”) account for a high proportion of γδ T cells with large γ and δ chain repertoires. The genomic organisation of the TR γ (TRG) and δ (TRD) loci has been determined in sheep and cattle, noting that a wide number of germline genes that encode for γ and δ chains characterise their genomes. Taking advantage of the current improved version of the genome assembly, we have investigated the genomic structure and gene content of the dromedary TRD locus, which, as in the other mammalian species, is nested within the TR α (TRA) genes. The most remarkable finding was the identification of a very limited number of variable germline genes (TRDV) compared to sheep and cattle, which supports our previous expression analyses for which the somatic hypermutation mechanism is able to enlarge and diversify the primary repertoire of dromedary δ chains. Furthermore, the comparison between genomic and expressed sequences reveals that D genes, up to four incorporated in a transcript, greatly contribute to the increased diversity of the dromedary δ chain antigen binding-site.
Collapse
MESH Headings
- Animals
- Camelus/genetics
- Computational Biology/methods
- Genetic Loci
- Genome
- Phylogeny
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy
- Correspondence:
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.L.); (P.D.); (S.C.); (R.A.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70010 Bari, Italy;
| | - Pietro D’Addabbo
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.L.); (P.D.); (S.C.); (R.A.)
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.L.); (P.D.); (S.C.); (R.A.)
| | - Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.L.); (P.D.); (S.C.); (R.A.)
| |
Collapse
|
34
|
Lim D, Blanchette M. EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM. Bioinformatics 2021; 36:i353-i361. [PMID: 32657367 PMCID: PMC7355264 DOI: 10.1093/bioinformatics/btaa447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motivation Accurate probabilistic models of sequence evolution are essential for a wide variety of bioinformatics tasks, including sequence alignment and phylogenetic inference. The ability to realistically simulate sequence evolution is also at the core of many benchmarking strategies. Yet, mutational processes have complex context dependencies that remain poorly modeled and understood. Results We introduce EvoLSTM, a recurrent neural network-based evolution simulator that captures mutational context dependencies. EvoLSTM uses a sequence-to-sequence long short-term memory model trained to predict mutation probabilities at each position of a given sequence, taking into consideration the 14 flanking nucleotides. EvoLSTM can realistically simulate mammalian and plant DNA sequence evolution and reveals unexpectedly strong long-range context dependencies in mutation probabilities. EvoLSTM brings modern machine-learning approaches to bear on sequence evolution. It will serve as a useful tool to study and simulate complex mutational processes. Availability and implementation Code and dataset are available at https://github.com/DongjoonLim/EvoLSTM. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dongjoon Lim
- School of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
35
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
36
|
Kulski JK, Suzuki S, Shiina T. SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction. Front Genet 2021; 11:594318. [PMID: 33537058 PMCID: PMC7848197 DOI: 10.3389/fgene.2020.594318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
37
|
Computational Evolutionary Biology. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang XQ, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020; 588:284-289. [PMID: 33239781 PMCID: PMC7759462 DOI: 10.1038/s41586-020-2947-8] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Georg Haberer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Venkata Suresh Bonthala
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Cécile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadia Kamal
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Lang
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jennifer Ens
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tefera T Angessa
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Camilla Hill
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Penghao Wang
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Lori B Boston
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | | | - Jerry Jenkins
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Dongdong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jing Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Chunchao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jane Grimwood
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Curtis J Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Palevich N, Maclean PH, Choi YJ, Mitreva M. Characterization of the Complete Mitochondrial Genomes of Two Sibling Species of Parasitic Roundworms, Haemonchus contortus and Teladorsagia circumcincta. Front Genet 2020; 11:573395. [PMID: 33133162 PMCID: PMC7578395 DOI: 10.3389/fgene.2020.573395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Haemonchus contortus and Teladorsagia circumcincta are among the two most pathogenic internal parasitic nematodes infecting small ruminants, such as sheep and goats, and are a global animal health issue. Accurate identification and delineation of Haemonchidae species is essential for development of diagnostic and control strategies with high resolution for Trichostrongyloidea infection in ruminants. Here, we describe in detail and compare the complete mitochondrial (mt) genomes of the New Zealand H. contortus and T. circumcincta field strains to improve our understanding of species- and strain-level evolution in these closely related roundworms. In the present study, we performed extensive comparative bioinformatics analyses on the recently sequenced complete mt genomes of the New Zealand H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP field strains. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP). The AT-rich mt genomes of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP are 14,001 bp (A+T content of 77.4%) and 14,081 bp (A+T content of 77.3%) in size, respectively. All 36 of the typical nematode mt genes are transcribed in the forward direction in both species and comprise of 12 protein-encoding genes (PCGs), 2 ribosomal RNA (rrn) genes, and 22 transfer RNA (trn) genes. The secondary structures for the 22 trn genes and two rrn genes differ between H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP, however the gene arrangements of both are consistent with other Trichostrongylidea sequenced to date. Comparative analyses of the complete mitochondrial nucleotide sequences, PCGs, A+T rich and non-coding repeat regions of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP further reinforces the high levels of diversity and gene flow observed among Trichostrongylidea, and supports their potential as ideal markers for strain-level identification from different hosts and geographical regions with high resolution for future studies. The complete mt genomes of H. contortus NZ_Hco_NP and T. circumcincta NZ_Teci_NP presented here provide useful novel markers for further studies of the meta-population connectivity and the genetic mechanisms driving evolution in nematode species.
Collapse
Affiliation(s)
- Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Paul H. Maclean
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Young-Jun Choi
- McDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Makedonka Mitreva
- McDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
40
|
Maurya S, Darshetkar AM, Yi DK, Kim J, Lee C, Ali MA, Choi S, Choudhary RK, Kim SY. Plastome comparison and evolution within the tribes of Plantaginaceae: Insights from an Asian gypsyweed. Saudi J Biol Sci 2020; 27:3489-3498. [PMID: 33304160 PMCID: PMC7715022 DOI: 10.1016/j.sjbs.2020.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022] Open
Abstract
In spite of availability of several plastomes representing different tribes of Plantaginaceae, sparse attempts have been made to understand the plastome structure, evolution, and phylogenomics. In the present study, we have made an effort to understand the gene content and plastome evolution in the family Plantaginaceae using the newly generated plastome sequence of Veronica ovata subsp. kiusiana, a taxon native to SE Asia. In the first-ever attempt, plastomes of seven out of 10 tribes of Plantaginaceae have been compared to understand the evolution across the tribes of Plantaginaceae. The size of the plastome of V. ovata subsp. kiusiana is 152,249 bp, showing a typical quadripartite structure containing LSC, SSC, and two IRs with the sizes of 83,187, 17,704, and 25,679 respectively. The plastome comparison revealed the unique deletions in ycf2 and ndhF genes of members of different tribes, and also revealed high nucleotide variable hotspots. The study also revealed six highly variable genes and intergenic spacer viz. rps16, rps15-ycf1, ccsA-ndhD, ndhC-trnV, petN-psbM, and ycf1-trnN as potential DNA barcodes for the genus Veronica. The phylogenomic study revealed the sister relationship between V. ovata subsp. kiusiana and V. persica and also suggested the tentative placement of seven tribes in the family Plantaginaceae.
Collapse
Affiliation(s)
- Satish Maurya
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
| | - Ashwini M Darshetkar
- Biodiversity & Palaeobiology Group, Agharkar Research Institute, Pune 411 004, India
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinki Kim
- Seed Vault Center, Baekdudaegan National Arboretum, Gyeongsangbuk-do 36209, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | | | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Giannico F, Massari S, Caputi Jambrenghi A, Soriano A, Pala A, Linguiti G, Ciccarese S, Antonacci R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics 2020; 21:623. [PMID: 32912163 PMCID: PMC7488459 DOI: 10.1186/s12864-020-07022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species. RESULTS Our analyses revealed that although the organization of the goat TRB locus is broadly similar to that of the other artiodactyl species, with three in-tandem D-J-C clusters located at the 3' end, a complex and extensive series of duplications have occurred in the V genes at the 5' end, leading to a marked expansion in the number of the TRBV genes. This phenomenon appears to be a feature of the ruminant lineage since similar gene expansions have also occurred in sheep and cattle. Likewise, the general organization of the goat TRG genes is typical of ruminant species studied so far, with two paralogous TRG loci, TRG1 and TRG2, located in two distinct and distant positions on the same chromosome as result of a split in the ancestral locus. Each TRG locus consists of reiterated V-J-J-C cassettes, with the goat TRG2 containing an additional cassette relative to the corresponding sheep and cattle loci. CONCLUSIONS Taken together, these findings demonstrate that strong evolutionary pressures in the ruminant lineage have selected for the development of enlarged sets of TRB and TRG genes that contribute to a diverse T cell receptor repertoire. However, differences observed among the goat, sheep and cattle TRB and TRG genes indicate that distinct evolutionary histories, with independent expansions and/or contractions, have also affected each ruminant species.
Collapse
Affiliation(s)
- Francesco Giannico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Soriano
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Angela Pala
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Rachele Antonacci
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy.
| |
Collapse
|
42
|
Sandkam BA, Campello L, O’Brien C, Nandamuri SP, Gammerdinger WJ, Conte MA, Swaroop A, Carleton KL. Tbx2a Modulates Switching of RH2 and LWS Opsin Gene Expression. Mol Biol Evol 2020; 37:2002-2014. [PMID: 32191319 PMCID: PMC7849988 DOI: 10.1093/molbev/msaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.
Collapse
Affiliation(s)
| | - Laura Campello
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Conor O’Brien
- Department of Biology, University of Maryland, College Park, MD
| | | | | | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
43
|
Dos Santos Bezerra R, Valença IN, de Cassia Ruy P, Ximenez JPB, da Silva Junior WA, Covas DT, Kashima S, Slavov SN. The novel coronavirus SARS-CoV-2: From a zoonotic infection to coronavirus disease 2019. J Med Virol 2020; 92:2607-2615. [PMID: 32470173 PMCID: PMC7283665 DOI: 10.1002/jmv.26072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
The novel coronavirus (CoV), severe acute respiratory syndrome (SARS)‐CoV‐2 is an international public health emergency. Until now, the intermediate host and mechanisms of the interspecies jump of this virus are unknown. Phylogenetic analysis of all available bat CoV complete genomes was performed to analyze the relationships between bat CoV and SARS‐CoV‐2. To suggest a possible intermediate host, another phylogenetic reconstruction of CoV genomes obtained from animals that were hypothetically commercialized in the Chinese markets was also carried out. Moreover, mutation analysis was executed to suggest genomic regions that may have permitted the adaptation of SARS‐CoV‐2 to the human host. The phylogenetic analysis demonstrated that SARS‐CoV‐2 formed a cluster with the bat CoV isolate RaTG13. Possible CoV interspecies jumps among bat isolates were also observed. The phylogenetic tree reconstructed from CoV strains belonging to different animals demonstrated that SARS‐CoV‐2, bat RaTG13, and pangolin CoV genomes formed a monophyletic cluster, demonstrating that pangolins may be suggested as SARS‐CoV‐2 intermediate hosts. Three AA substitutions localized in the S1 portion of the S gene were observed, some of which have been correlated to structural modifications of the S protein which may facilitate SARS‐CoV‐2 tropism to human cells. Our analysis shows the tight relationship between SARS‐CoV‐2 and bat SARS‐like strains. It also hypothesizes that pangolins might have been possible intermediate hosts of the infection. Some of the observed AA substitutions in the S‐binding protein may serve as possible adaptation mutations in humans but more studies are needed to elucidate their function.
The intermediate host of SARS‐CoV‐2 is unknown. Zoonotic genomic surveillance is important to understant SARS‐CoV‐2 evolutionary history. Bat coronavirus internspecies jumps are important for the evolution of coronaviruses. Specific aminoacid substitutions might have helped for the adaptation of SARS‐CoV‐2 in the human population.
Collapse
Affiliation(s)
- Rafael Dos Santos Bezerra
- Pós-Graduation Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ian N Valença
- Pós-Graduation Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia de Cassia Ruy
- Center for Medical Genomics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P B Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilson A da Silva Junior
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas T Covas
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Simone Kashima
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Svetoslav N Slavov
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A, Fitak R, Massari S, Ciccarese S. Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103614. [PMID: 31962062 DOI: 10.1016/j.dci.2020.103614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The emergent availability in public databases of more complete genome assemblies allows us to improve genomic data obtained by classical molecular cloning. The main goal of this study was to refine the genomic map of the dromedary TRG locus by integrating our previous genomic data with the analysis of recent genomic assemblies. We identified an additional TRGC cassette, defined as a V-J-C recombination unit, located at the 5' of the locus and made up of five TRGV genes followed by three TRGJ genes and one TRGC gene. Hence, the complete dromedary TRG locus spans about 105 Kb and consists of three in tandem TRGC cassettes delimited by AMPH and STARD3NL genes at the 5' and 3' end, respectively. An expression assay carried out on peripheral blood showed the functional competency for the dromedary TRGC5 cassette and confirmed the presence of the somatic hypermutation mechanism able to enlarge the repertoire diversity of the dromedary γδ T cells.
Collapse
Affiliation(s)
- R Antonacci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - G Linguiti
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - P A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - V Castelli
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - A Pala
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - R Fitak
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria; Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - S Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - S Ciccarese
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
45
|
Li C, Huang R, Nie F, Li J, Zhu W, Shi X, Guo Y, Chen Y, Wang S, Zhang L, Chen L, Li R, Liu X, Zheng C, Zhang C, Ma RZ. Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution. Front Immunol 2020; 11:260. [PMID: 32161588 PMCID: PMC7053375 DOI: 10.3389/fimmu.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time ~140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.
Collapse
Affiliation(s)
- Chaokun Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangyuan Nie
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiujie Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zhu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Shi
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Guo
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Wang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limeng Zhang
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Longxin Chen
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Runting Li
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Changming Zheng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Runlin Z Ma
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| |
Collapse
|
46
|
Irwin DM. Variation in the rates of evolution of the insulin and glucagon hormone and receptor genes in rodents. Gene 2020; 728:144296. [DOI: 10.1016/j.gene.2019.144296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
|
47
|
Gabriel JE. Clustering accentuated matches and highly conserved domains between bacterial and human heat shock gene and protein. BRAZ J BIOL 2019; 80:943-945. [PMID: 31800763 DOI: 10.1590/1519-6984.219608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022] Open
Affiliation(s)
- J E Gabriel
- Universidade Federal do Vale do São Francisco - UNIVASF, Campus Centro Universitário, Av. José de Sá Maniçoba, s/n, Centro, CEP 56304-917, Petrolina, PE, Brasil
| |
Collapse
|
48
|
Antonacci R, Bellini M, Linguiti G, Ciccarese S, Massari S. Comparative Analysis of the TRB Locus in the Camelus Genus. Front Genet 2019; 10:482. [PMID: 31231418 PMCID: PMC6558370 DOI: 10.3389/fgene.2019.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/06/2019] [Indexed: 11/26/2022] Open
Abstract
T cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens. The recent genomic characterization of the Camelus dromedarius T cell receptor β (TRB) locus has allowed us to infer the structure of this locus from the draft genome sequences of its wild and domestic Bactrian congeners, Camelus ferus and Camelus bactrianus. The general structural organization of the wild and domestic Bactrian TRB locus is similar to that of the dromedary, with a pool of TRBV genes positioned at the 5′ end of D-J-C clusters, followed by a single TRBV gene located at the 3′ end with an inverted transcriptional orientation. Despite the fragmented nature of the assemblies, comparative genomics reveals the existence of a perfect co-linearity between the three Old World camel TRB genomic sequences, which enables the transfer of information from one sequence to another and the filling of gaps in the genomic sequences. A virtual camelid TRB locus is hypothesized with the presence of 33 TRBV genes distributed in 26 subgroups. Likewise, in the artiodactyl species, three in-tandem D-J-C clusters, each composed of one TRBD gene, six or seven TRBJ genes, and one TRBC gene, are placed at the 3′ end of the locus. As reported in the ruminant species, a group of four functional TRY genes at the 5′ end and only one gene at the 3′ end, complete the camelid TRB locus. Although the gene content is similar, differences are observed in the TRBV functional repertoire, and genes that are functional in one species are pseudogenes in the other species. Hence, variations in the functional repertoire between dromedary, wild and domestic Bactrian camels, rather than differences in the gene content, may represent the molecular basis explaining the disparity in the TRB repertoire between the Camelus species. Finally, our data contribute to the knowledge about the evolutionary history of Old World camelids.
Collapse
Affiliation(s)
| | | | | | | | - Serafina Massari
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
49
|
Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One 2019; 14:e0214145. [PMID: 30947257 PMCID: PMC6448822 DOI: 10.1371/journal.pone.0214145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait for obtainment of higher yield in cereals. But molecular basis of this root architecture trait remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy” and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantitative RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stronger expression of TaBDRO1-like than barley (HvDRO1-like), but TaBDRO1-like was the least expressing among three paralogs. The underlying cause of this expression divergence seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaBDRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homoeologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and other cis-regulatory elements during expression divergence. Since root architecture is an important target trait for wheat crop improvement, therefore DRO1-like genes have potential applications in plant breeding for enhancement of plant productivity by the use of modern genome editing approaches.
Collapse
|
50
|
de Sá ALA, Breaux B, Burlamaqui TCT, Deiss TC, Sena L, Criscitiello MF, Schneider MPC. The Marine Mammal Class II Major Histocompatibility Complex Organization. Front Immunol 2019; 10:696. [PMID: 31019512 PMCID: PMC6459222 DOI: 10.3389/fimmu.2019.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sirenians share with cetaceans and pinnipeds several convergent traits selected for the aquatic lifestyle. Living in water poses new challenges not only for locomotion and feeding but also for combating new pathogens, which may render the immune system one of the best tools aquatic mammals have for dealing with aquatic microbial threats. So far, only cetaceans have had their class II Major Histocompatibility Complex (MHC) organization characterized, despite the importance of MHC genes for adaptive immune responses. This study aims to characterize the organization of the marine mammal class II MHC using publicly available genomes. We located class II sequences in the genomes of one sirenian, four pinnipeds and eight cetaceans using NCBI-BLAST and reannotated the sequences using local BLAST search with exon and intron libraries. Scaffolds containing class II sequences were compared using dotplot analysis and introns were used for phylogenetic analysis. The manatee class II region shares overall synteny with other mammals, however most DR loci were translocated from the canonical location, past the extended class II region. Detailed analysis of the genomes of closely related taxa revealed that this presumed translocation is shared with all other living afrotherians. Other presumptive chromosome rearrangements in Afrotheria are the deletion of DQ loci in Afrosoricida and deletion of DP in E. telfairi. Pinnipeds share the main features of dog MHC: lack of a functional pair of DPA/DPB genes and inverted DRB locus between DQ and DO subregions. All cetaceans share the Cetartiodactyla inversion separating class II genes into two subregions: class IIa, with DR and DQ genes, and class IIb, with non-classic genes and a DRB pseudogene. These results point to three distinct and unheralded class II MHC structures in marine mammals: one canonical organization but lacking DP genes in pinnipeds; one bearing an inversion separating IIa and IIb subregions lacking DP genes found in cetaceans; and one with a translocation separating the most diverse class II gene from the MHC found in afrotherians and presumptive functional DR, DQ, and DP genes. Future functional research will reveal how these aquatic mammals cope with pathogen pressures with these divergent MHC organizations.
Collapse
Affiliation(s)
- André Luiz Alves de Sá
- Laboratory of Applied Genetics, Socio-Environmental and Water Resources Institute, Federal Rural University of the Amazon, Belém, Brazil.,Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| | - Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Thaddeus Charles Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Leonardo Sena
- Center of Biodiversity Advanced Studies, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| | - Michael Frederick Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Maria Paula Cruz Schneider
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|