1
|
Zhang H, Lu Z, Zhan Y, Rodriguez J, Lu C, Xue Y, Lin Z. Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation. RNA Biol 2021; 18:1642-1652. [PMID: 33280509 DOI: 10.1080/15476286.2020.1860389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Regulation of gene expression starts from the transcription initiation. Regulated transcription initiation is critical for generating correct transcripts with proper abundance. The impact of epigenetic control, such as histone modifications and chromatin remodelling, on gene regulation has been extensively investigated, but their specific role in regulating transcription initiation is far from well understood. Here we aimed to better understand the roles of genes involved in histone H3 methylations and chromatin remodelling on the regulation of transcription initiation at a genome-scale using the budding yeast as a study system. We obtained and compared maps of transcription start site (TSS) at single-nucleotide resolution by nAnT-iCAGE for a strain with depletion of MINC (Mot1-Ino80C-Nc2) by Mot1p and Ino80p anchor-away (Mot1&Ino80AA) and a strain with loss of histone methylation (set1Δset2Δdot1Δ) to their wild-type controls. Our study showed that the depletion of MINC stimulated transcription initiation from many new sites flanking the dominant TSS of genes, while the loss of histone methylation generates more TSSs in the coding region. Moreover, the depletion of MINC led to less confined boundaries of TSS clusters (TCs) and resulted in broader core promoters, and such patterns are not present in the ssdΔ mutant. Our data also exhibits that the MINC has distinctive impacts on TATA-containing and TATA-less promoters. In conclusion, our study shows that MINC is required for accurate identification of bona fide TSSs, particularly in TATA-containing promoters, and histone methylation contributes to the repression of transcription initiation in coding regions.
Collapse
Affiliation(s)
- Huiming Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Chen X, Poorey K, Carver MN, Müller U, Bekiranov S, Auble DT, Brow DA. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome. PLoS Genet 2017; 13:e1006863. [PMID: 28665995 PMCID: PMC5513554 DOI: 10.1371/journal.pgen.1006863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/17/2017] [Accepted: 06/10/2017] [Indexed: 01/04/2023] Open
Abstract
Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. The information stored in the DNA of a cell’s chromosomes is transmitted to the rest of the cell by transcribing the DNA into RNA copies or “transcripts”. The fidelity of this process, and thus the health of the cell, depends critically on the proper function of proteins that direct transcription. Since hundreds of genes, each specifying a unique RNA transcript, are arranged in tandem along each chromosome, the beginning and end of each gene must be marked in the DNA sequence. Although encoded in DNA, the signal for terminating an RNA transcript is usually recognized in the transcript itself. We examined the genome-wide functional targets of six proteins implicated in transcription termination by identifying transcripts whose structure or abundance is altered by a mutation that compromises the activity of each protein. For a small minority of transcripts, a mutation in any of the six proteins disrupts termination. Much more commonly, a transcript is affected by a mutation in only one or a few of the six proteins, revealing the varying extent to which the proteins cooperate with one another. We discovered affected transcripts that were not known to be controlled by any of the six proteins, including a cohort of genes required for meiosis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Ulrika Müller
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (DAB); (DTA)
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (DAB); (DTA)
| |
Collapse
|
3
|
Viswanathan R, True JD, Auble DT. Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme. J Biol Chem 2016; 291:15714-26. [PMID: 27255709 DOI: 10.1074/jbc.m116.730366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
The essential Saccharomyces cerevisiae ATPase Mot1 globally regulates transcription by impacting the genomic distribution and activity of the TATA-binding protein (TBP). In vitro, Mot1 forms a ternary complex with TBP and DNA and can use ATP hydrolysis to dissociate the TBP-DNA complex. Prior work suggested an interaction between the ATPase domain and a functionally important segment of DNA flanking the TATA sequence. However, how ATP hydrolysis facilitates removal of TBP from DNA is not well understood, and several models have been proposed. To gain insight into the Mot1 mechanism, we dissected the role of the flanking DNA segment by biochemical analysis of complexes formed using DNAs with short single-stranded gaps. In parallel, we used a DNA tethered cleavage approach to map regions of Mot1 in proximity to the DNA under different conditions. Our results define non-equivalent roles for bases within a broad segment of flanking DNA required for Mot1 action. Moreover, we present biochemical evidence for two distinct conformations of the Mot1 ATPase, the detection of which can be modulated by ATP analogs as well as DNA sequence flanking the TATA sequence. We also show using purified complexes that Mot1 dissociation of a stable, high affinity TBP-DNA interaction is surprisingly inefficient, suggesting how other transcription factors that bind to TBP may compete with Mot1. Taken together, these results suggest that TBP-DNA affinity as well as other aspects of promoter sequence influence Mot1 function in vivo.
Collapse
Affiliation(s)
- Ramya Viswanathan
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Jason D True
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David T Auble
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
4
|
True JD, Muldoon JJ, Carver MN, Poorey K, Shetty SJ, Bekiranov S, Auble DT. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization. J Biol Chem 2016; 291:15307-19. [PMID: 27226635 DOI: 10.1074/jbc.m116.735134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/06/2022] Open
Abstract
Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation.
Collapse
Affiliation(s)
- Jason D True
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Joseph J Muldoon
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Melissa N Carver
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Kunal Poorey
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Savera J Shetty
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Stefan Bekiranov
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| | - David T Auble
- From the Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
5
|
Horn AE, Kugel JF, Goodrich JA. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res 2016; 44:7132-43. [PMID: 27112574 PMCID: PMC5009721 DOI: 10.1093/nar/gkw321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/18/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity.
Collapse
Affiliation(s)
- Abigail E Horn
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Ravarani CNJ, Chalancon G, Breker M, de Groot NS, Babu MM. Affinity and competition for TBP are molecular determinants of gene expression noise. Nat Commun 2016; 7:10417. [PMID: 26832815 PMCID: PMC4740812 DOI: 10.1038/ncomms10417] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell variation in gene expression levels (noise) generates phenotypic diversity and is an important phenomenon in evolution, development and disease. TATA-box binding protein (TBP) is an essential factor that is required at virtually every eukaryotic promoter to initiate transcription. While the presence of a TATA-box motif in the promoter has been strongly linked with noise, the molecular mechanism driving this relationship is less well understood. Through an integrated analysis of multiple large-scale data sets, computer simulation and experimental validation in yeast, we provide molecular insights into how noise arises as an emergent property of variable binding affinity of TBP for different promoter sequences, competition between interaction partners to bind the same surface on TBP (to either promote or disrupt transcription initiation) and variable residence times of TBP complexes at a promoter. These determinants may be fine-tuned under different conditions and during evolution to modulate eukaryotic gene expression noise.
Collapse
Affiliation(s)
- Charles N J Ravarani
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guilhem Chalancon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
7
|
The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:405-19. [PMID: 26775127 DOI: 10.1016/j.bbagrm.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription.
Collapse
|
8
|
Abstract
The Swi2/Snf2 family ATPase Mot1 displaces TATA-binding protein (TBP) from DNA in vitro, but the global relationship between Mot1 and TBP in vivo is unclear. In particular, how Mot1 activates transcription is poorly understood. To address these issues, we mapped the distribution of Mot1 and TBP on native chromatin at base pair resolution. Mot1 and TBP binding sites coincide throughout the genome, and depletion of TBP results in a global decrease in Mot1 binding. We find evidence that Mot1 approaches TBP from the upstream direction, consistent with its in vitro mode of action. Strikingly, inactivation of Mot1 leads to both increases and decreases in TBP-genome association. Sites of TBP gain tend to contain robust TATA boxes, while sites of TBP loss contain poly(dA-dT) tracts that may contribute to nucleosome exclusion. Sites of TBP gain are associated with increased gene expression, while decreased TBP binding is associated with reduced gene expression. We propose that the action of Mot1 is required to clear TBP from intrinsically preferred (TATA-containing) binding sites, ensuring sufficient soluble TBP to bind intrinsically disfavored (TATA-less) sites.
Collapse
|
9
|
Poorey K, Viswanathan R, Carver MN, Karpova TS, Cirimotich SM, McNally JG, Bekiranov S, Auble DT. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 2013; 342:369-72. [PMID: 24091704 PMCID: PMC3997053 DOI: 10.1126/science.1242369] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins, but it is unknown how stable most native interactions are. Although live-cell imaging suggests short-lived interactions at tandem gene arrays, current methods cannot measure rapid binding dynamics at single-copy genes. We show, by using a modified ChIP assay with subsecond temporal resolution, that the time dependence of formaldehyde cross-linking can be used to extract in vivo on and off rates for site-specific chromatin interactions varying over a ~100-fold dynamic range. By using the method, we show that a regulatory process can shift weakly bound TATA-binding protein to stable promoter interactions, thereby facilitating transcription complex formation. This assay provides an approach for systematic, quantitative analyses of chromatin binding dynamics in vivo.
Collapse
Affiliation(s)
- Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Tatiana S. Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shana M. Cirimotich
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - James G. McNally
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Moyle-Heyrman G, Viswanathan R, Widom J, Auble DT. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA. J Biol Chem 2012; 287:9002-12. [PMID: 22298788 DOI: 10.1074/jbc.m111.333484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The TATA box binding protein (TBP) is a central component of the transcription preinitiation complex, and its occupancy at a promoter is correlated with transcription levels. The TBP-promoter DNA complex contains sharply bent DNA and its interaction lifetime is limited by the ATP-dependent TBP displacement activity of the Snf2/Swi2 ATPase Mot1. Several mechanisms for Mot1 action have been proposed, but how it catalyzes TBP removal from DNA is unknown. To better understand the Mot1 mechanism, native gel electrophoresis and FRET were used to determine how Mot1 affects the trajectory of DNA in the TBP-DNA complex. Strikingly, in the absence of ATP, Mot1 acts to unbend DNA, whereas TBP remains closely associated with the DNA in a stable Mot1-TBP-DNA ternary complex. Interestingly, and in contrast to full-length Mot1, the isolated Mot1 ATPase domain binds DNA, and its affinity for DNA is nucleotide-dependent, suggesting parallels between the Mot1 mechanism and DNA translocation-based mechanisms of chromatin remodeling enzymes. Based on these findings, a model is presented for Mot1 that links a DNA conformational change with ATP-induced DNA translocation.
Collapse
|
11
|
Choukrallah MA, Kobi D, Martianov I, Pijnappel WWMP, Mischerikow N, Ye T, Heck AJR, Timmers HTM, Davidson I. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome. Nucleic Acids Res 2011; 40:1446-59. [PMID: 22013162 PMCID: PMC3287176 DOI: 10.1093/nar/gkr802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP–BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells.
Collapse
Affiliation(s)
- Mohamed-Amin Choukrallah
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hyland EM, Molina H, Poorey K, Jie C, Xie Z, Dai J, Qian J, Bekiranov S, Auble DT, Pandey A, Boeke JD. An evolutionarily 'young' lysine residue in histone H3 attenuates transcriptional output in Saccharomyces cerevisiae. Genes Dev 2011; 25:1306-19. [PMID: 21685365 DOI: 10.1101/gad.2050311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The DNA entry and exit points on the nucleosome core regulate the initial invasion of the nucleosome by factors requiring access to the underlying DNA. Here we describe in vivo consequences of eliminating a single protein-DNA interaction at this position through mutagenesis of histone H3 Lys 42 to alanine. This substitution has a dramatic effect on the Saccharomyces cerevisiae transcriptome in both the transcriptional output and landscape of mRNA species produced. We attribute this in part to decreased histone H3 occupancy at transcriptionally active loci, leading to enhanced elongation. Additionally we show that this lysine is methylated in vivo, and genetic studies of methyl-lysine mimics suggest that this modification may be crucial in attenuating gene expression. Interestingly, this site of methylation is unique to Ascomycota, suggesting a recent evolutionary innovation that highlights the evolvability of post-translational modifications of chromatin.
Collapse
Affiliation(s)
- Edel M Hyland
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|