1
|
Lucas O, Ward S, Zaidi R, Bunkum A, Frankell AM, Moore DA, Hill MS, Liu WK, Marinelli D, Lim EL, Hessey S, Naceur-Lombardelli C, Rowan A, Purewal-Mann SK, Zhai H, Dietzen M, Ding B, Royle G, Aparicio S, McGranahan N, Jamal-Hanjani M, Kanu N, Swanton C, Zaccaria S. Characterizing the evolutionary dynamics of cancer proliferation in single-cell clones with SPRINTER. Nat Genet 2025; 57:103-114. [PMID: 39614124 PMCID: PMC11735394 DOI: 10.1038/s41588-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/15/2024] [Indexed: 12/01/2024]
Abstract
Proliferation is a key hallmark of cancer, but whether it differs between evolutionarily distinct clones co-existing within a tumor is unknown. We introduce the Single-cell Proliferation Rate Inference in Non-homogeneous Tumors through Evolutionary Routes (SPRINTER) algorithm that uses single-cell whole-genome DNA sequencing data to enable accurate identification and clone assignment of S- and G2-phase cells, as assessed by generating accurate ground truth data. Applied to a newly generated longitudinal, primary-metastasis-matched dataset of 14,994 non-small cell lung cancer cells, SPRINTER revealed widespread clone proliferation heterogeneity, orthogonally supported by Ki-67 staining, nuclei imaging and clinical imaging. We further demonstrated that high-proliferation clones have increased metastatic seeding potential, increased circulating tumor DNA shedding and clone-specific altered replication timing in proliferation- or metastasis-related genes associated with expression changes. Applied to previously generated datasets of 61,914 breast and ovarian cancer cells, SPRINTER revealed increased single-cell rates of different genomic variants and enrichment of proliferation-related gene amplifications in high-proliferation clones.
Collapse
Affiliation(s)
- Olivia Lucas
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- University College London Hospitals, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Genomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Rija Zaidi
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Abigail Bunkum
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Wing Kin Liu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Daniele Marinelli
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sonya Hessey
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | | | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Boyue Ding
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- University College London Hospitals, London, UK.
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
2
|
Hains AE, Chetal K, Nakatani T, Marques JG, Ettinger A, Junior CAOB, Gonzalez-Sandoval A, Pillai R, Filbin MG, Torres-Padilla ME, Sadreyev RI, Van Rechem C. Multi-omics approaches reveal that diffuse midline gliomas present altered DNA replication and are susceptible to replication stress therapy. Genome Biol 2024; 25:319. [PMID: 39707510 DOI: 10.1186/s13059-024-03460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The fatal diffuse midline gliomas (DMG) are characterized by an undruggable H3K27M mutation in H3.1 or H3.3. K27M impairs normal development by stalling differentiation. The identification of targetable pathways remains very poorly explored. Toward this goal, we undertake a multi-omics approach to evaluate replication timing profiles, transcriptomics, and cell cycle features in DMG cells from both H3.1K27M and H3.3K27M subgroups and perform a comparative, integrative data analysis with healthy brain tissue. RESULTS DMG cells present differential replication timing in each subgroup, which, in turn, correlates with significant differential gene expression. Differentially expressed genes in S phase are involved in various pathways related to DNA replication. We detect increased expression of DNA replication genes earlier in the cell cycle in DMG cell lines compared to normal brain cells. Furthermore, the distance between origins of replication in DMG cells is smaller than in normal brain cells and their fork speed is slower, a read-out of replication stress. Consistent with these findings, DMG tumors present high replication stress signatures in comparison to normal brain cells. Finally, DMG cells are specifically sensitive to replication stress therapy. CONCLUSIONS This whole genome multi-omics approach provides insights into the cell cycle regulation of DMG via the H3K27M mutations and establishes a pharmacologic vulnerability in DNA replication, which resolves a potentially novel therapeutic strategy for this non-curable disease.
Collapse
Affiliation(s)
- Anastasia E Hains
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Carlos A O Biagi Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Renjitha Pillai
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | |
Collapse
|
3
|
Weiner AC, Williams MJ, Shi H, Vázquez-García I, Salehi S, Rusk N, Aparicio S, Shah SP, McPherson A. Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data. Nat Commun 2024; 15:8512. [PMID: 39353885 PMCID: PMC11445576 DOI: 10.1038/s41467-024-52544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.
Collapse
Affiliation(s)
- Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Rusk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
5
|
Dietzen M, Zhai H, Lucas O, Pich O, Barrington C, Lu WT, Ward S, Guo Y, Hynds RE, Zaccaria S, Swanton C, McGranahan N, Kanu N. Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution. Nat Commun 2024; 15:6039. [PMID: 39019871 PMCID: PMC11255325 DOI: 10.1038/s41467-024-50107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
During each cell cycle, the process of DNA replication timing is tightly regulated to ensure the accurate duplication of the genome. The extent and significance of alterations in this process during malignant transformation have not been extensively explored. Here, we assess the impact of altered replication timing (ART) on cancer evolution by analysing replication-timing sequencing of cancer and normal cell lines and 952 whole-genome sequenced lung and breast tumours. We find that 6%-18% of the cancer genome exhibits ART, with regions with a change from early to late replication displaying an increased mutation rate and distinct mutational signatures. Whereas regions changing from late to early replication contain genes with increased expression and present a preponderance of APOBEC3-mediated mutation clusters and associated driver mutations. We demonstrate that ART occurs relatively early during cancer evolution and that ART may have a stronger correlation with mutation acquisition than alterations in chromatin structure.
Collapse
Affiliation(s)
- Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Haoran Zhai
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Olivia Lucas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Yanping Guo
- CRUK Flow Cytometry Translational Technology Platform, UCL Cancer Institute, London, UK
| | - Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Weiner AC, Williams MJ, Shi H, Vázquez-García I, Salehi S, Rusk N, Aparicio S, Shah SP, McPherson A. Single-cell DNA replication dynamics in genomically unstable cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536250. [PMID: 37090647 PMCID: PMC10120671 DOI: 10.1101/2023.04.10.536250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Dysregulated DNA replication is both a cause and a consequence of aneuploidy, yet the dynamics of DNA replication in aneuploid cell populations remains understudied. We developed a new method, PERT, for inferring cell-specific DNA replication states from single-cell whole genome sequencing, and investigated clone-specific DNA replication dynamics in >50,000 cells obtained from a collection of aneuploid and clonally heterogeneous cell lines, xenografts and primary cancer tissues. Clone replication timing (RT) profiles correlated with future copy number changes in serially passaged cell lines. Cell type was the strongest determinant of RT heterogeneity, while whole genome doubling and mutational process were associated with accumulation of late S-phase cells and weaker RT associations. Copy number changes affecting chromosome X had striking impact on RT, with loss of the inactive X allele shifting replication earlier, and loss of inactive Xq resulting in reactivation of Xp. Finally, analysis of time series xenografts illustrate how cell cycle distributions approximate clone proliferation, recapitulating expected relationships between proliferation and fitness in treatment-naive and chemotherapeutic contexts.
Collapse
Affiliation(s)
- Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Rusk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Wu J, Liu Y, Zhangding Z, Liu X, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W, Hu J. Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nat Genet 2023; 55:1347-1358. [PMID: 37500731 DOI: 10.1038/s41588-023-01458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Cohesin loss-of-function mutations are frequently observed in tumors, but the mechanism underlying its role in tumorigenesis is unclear. Here, we found that depletion of RAD21, a core subunit of cohesin, leads to massive genome-wide DNA breaks and 147 translocation hotspot genes, co-mutated with cohesin in multiple cancers. Increased DNA damages are independent of RAD21-loss-induced transcription alteration and loop anchor disruption. However, damage-induced chromosomal translocations coincide with the asymmetrically distributed Okazaki fragments of DNA replication, suggesting that RAD21 depletion causes replication stresses evidenced by the slower replication speed and increased stalled forks. Mechanistically, approximately 30% of the human genome exhibits an earlier replication timing after RAD21 depletion, caused by the early initiation of >900 extra dormant origins. Correspondingly, most translocation hotspot genes lie in timing-altered regions. Therefore, we conclude that cohesin dysfunction causes replication stresses induced by excessive DNA replication initiation, resulting in gross DNA damages that may promote tumorigenesis.
Collapse
Affiliation(s)
- Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Zhengrong Zhangding
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Haoxin Liang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yuefeng Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Mohan Chen
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yiyang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Jianhang Yin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Weiwei Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China.
| |
Collapse
|
8
|
Rivera-Mulia JC, Trevilla-Garcia C, Martinez-Cifuentes S. Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing. Chromosome Res 2022; 30:401-414. [PMID: 35781769 PMCID: PMC10124313 DOI: 10.1007/s10577-022-09703-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
The human genome is divided into functional units that replicate at specific times during S-phase. This temporal program is known as replication timing (RT) and is coordinated with the spatial organization of the genome and transcriptional activity. RT is also cell type-specific, dynamically regulated during development, and alterations in RT are observed in multiple diseases. Thus, the precise measure of RT is critical to understand the role of RT in gene function regulation. Distinct methods for assaying the RT program exist; however, conventional methods require thousands of cells as input, prohibiting its applicability to samples with limited cell numbers such as those from disease patients or from early developing embryos. Although single-cell RT analyses have been developed, these methods are low throughput, require generation of numerous libraries, increased sequencing costs, and produce low resolution data. Here, we developed an improved method to measure RT genome-wide that enables high-resolution analysis of low input samples. This method incorporates direct cell sorting into lysis buffer, as well as DNA fragmentation and library preparation in a single tube, resulting in higher yields, increased quality, and reproducibility with decreased costs. We also performed a systematic data processing analysis to provide standardized parameters for RT measurement. This optimized method facilitates RT analysis and will enable its application to a broad range of studies investigating the role of RT in gene expression, nuclear architecture, and disease.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Claudia Trevilla-Garcia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Santiago Martinez-Cifuentes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
9
|
Gnan S, Josephides JM, Wu X, Spagnuolo M, Saulebekova D, Bohec M, Dumont M, Baudrin LG, Fachinetti D, Baulande S, Chen CL. Kronos scRT: a uniform framework for single-cell replication timing analysis. Nat Commun 2022; 13:2329. [PMID: 35484127 PMCID: PMC9050662 DOI: 10.1038/s41467-022-30043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Mammalian genomes are replicated in a cell type-specific order and in coordination with transcription and chromatin organization. Currently, single-cell replication studies require individual processing of sorted cells, yielding a limited number (<100) of cells. Here, we develop Kronos scRT, a software for single-cell Replication Timing (scRT) analysis. Kronos scRT does not require a specific platform or cell sorting, which allows investigating large datasets obtained from asynchronous cells. By applying our tool to published data as well as droplet-based single-cell whole-genome sequencing data generated in this study, we exploit scRT from thousands of cells for different mouse and human cell lines. Our results demonstrate that although genomic regions are frequently replicated around their population average RT, replication can occur stochastically throughout S phase. Altogether, Kronos scRT allows fast and comprehensive investigations of the RT programme at the single-cell resolution for both homogeneous and heterogeneous cell populations. A scalable approach to explore DNA replication in single cells reveals that although aneuploidy does not have a major impact on the pattern of replication, different cell types and sub-populations display distinguished replication paths.
Collapse
Affiliation(s)
- Stefano Gnan
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Joseph M Josephides
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Xia Wu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Manuela Spagnuolo
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Dalila Saulebekova
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| | - Mylène Bohec
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Laura G Baudrin
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS UMR144, Cell Biology and Cancer, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, 75005, Paris, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
10
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
11
|
Tsepenko VV, Shkavrova TG, Cherkesov VN, Golub EV, Mikhailova GF. Asynchronous DNA Replication of Biallelically Expressed Genes in Human Peripheral Blood Lymphocytes as a Prognostic Sign of Cancer. Sovrem Tekhnologii Med 2021; 13:33-38. [PMID: 34603753 PMCID: PMC8482818 DOI: 10.17691/stm2021.13.3.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to identify and quantify lymphocytes with asynchronous replication of the AURKA and TP53 genes in cancer patients versus controls and to assess the diagnostic capabilities of this approach.
Collapse
Affiliation(s)
- V V Tsepenko
- Senior Researcher, Laboratory of Molecular and Genetic Pathology, Department of Clinical Morphology; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Korolev St., Obninsk, 249036, Russia
| | - T G Shkavrova
- Senior Researcher, Laboratory of Molecular and Genetic Pathology, Department of Clinical Morphology; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Korolev St., Obninsk, 249036, Russia
| | - V N Cherkesov
- Head of the Laboratory for Quality Control of Medical Care; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Korolev St., Obninsk, 249036, Russia
| | - E V Golub
- Leading Researcher, Laboratory of Molecular and Genetic Pathology, Department of Clinical Morphology; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Korolev St., Obninsk, 249036, Russia
| | - G F Mikhailova
- Head of the Laboratory of Molecular and Genetic Pathology, Department of Clinical Morphology; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Korolev St., Obninsk, 249036, Russia
| |
Collapse
|
12
|
Courtot L, Bournique E, Maric C, Guitton-Sert L, Madrid-Mencía M, Pancaldi V, Cadoret JC, Hoffmann JS, Bergoglio V. Low Replicative Stress Triggers Cell-Type Specific Inheritable Advanced Replication Timing. Int J Mol Sci 2021; 22:ijms22094959. [PMID: 34066960 PMCID: PMC8125030 DOI: 10.3390/ijms22094959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/27/2022] Open
Abstract
DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.
Collapse
Affiliation(s)
- Lilas Courtot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Elodie Bournique
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Chrystelle Maric
- Université de Paris, CNRS, Institut Jacques Monod, DNA Replication Pathologies Team, F-75006 Paris, France;
| | - Laure Guitton-Sert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Miguel Madrid-Mencía
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
- Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Jean-Charles Cadoret
- Université de Paris, CNRS, Institut Jacques Monod, DNA Replication Pathologies Team, F-75006 Paris, France;
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| | - Jean-Sébastien Hoffmann
- Laboratoire de pathologie, Laboratoire d’excellence Toulouse Cancer, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, CEDEX, 31059 Toulouse, France
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| | - Valérie Bergoglio
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, University Paul Sabatier III, ERL5294 CNRS, 2 Avenue Hubert Curien, 31037 Toulouse, France; (L.C.); (E.B.); (L.G.-S.); (M.M.-M.); (V.P.)
- Correspondence: (J.-C.C.); (J.-S.H.); (V.B.)
| |
Collapse
|
13
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
14
|
Takebayashi SI, Ryba T, Wimbish K, Hayakawa T, Sakaue M, Kuriya K, Takahashi S, Ogata S, Hiratani I, Okumura K, Okano M, Ogata M. The Temporal Order of DNA Replication Shaped by Mammalian DNA Methyltransferases. Cells 2021; 10:cells10020266. [PMID: 33572832 PMCID: PMC7911666 DOI: 10.3390/cells10020266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.
Collapse
Affiliation(s)
- Shin-ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
- Correspondence:
| | - Tyrone Ryba
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Kelsey Wimbish
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Takuya Hayakawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Morito Sakaue
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Kenji Kuriya
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Shin Ogata
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Masato Ogata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan;
| |
Collapse
|
15
|
Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Adv 2020; 3:3201-3213. [PMID: 31698451 DOI: 10.1182/bloodadvances.2019000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/18/2019] [Indexed: 12/29/2022] Open
Abstract
Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.
Collapse
|
16
|
4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. Mol Cell 2020; 78:522-538.e9. [PMID: 32220303 PMCID: PMC7208559 DOI: 10.1016/j.molcel.2020.03.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation. Deep multi-omics characterization of replicative and oncogene-induced senescence Senescence-associated heterochromatin domains (SAHDs) form SAHFs via 3D changes DNMT1 is required for SAHF formation via regulation of HMGA2 expression SAHF formation leads to expression of SAHF-adjacent genes via 3D chromatin contacts
Collapse
|
17
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
18
|
Chen Y, Li K, Chu X, Carey LB, Qian W. Synchronized replication of genes encoding the same protein complex in fast-proliferating cells. Genome Res 2019; 29:1929-1938. [PMID: 31662304 PMCID: PMC6886510 DOI: 10.1101/gr.254342.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
DNA replication perturbs the dosage balance among genes; at mid-S phase, early-replicating genes have doubled their copies while late-replicating ones have not. Dosage imbalance among genes, especially within members of a protein complex, is toxic to cells. However, the molecular mechanisms that cells use to deal with such imbalance remain not fully understood. Here, we validate at the genomic scale that the dosage between early- and late-replicating genes is imbalanced in HeLa cells. We propose the synchronized replication hypothesis that genes sensitive to stoichiometric relationships will be replicated simultaneously to maintain stoichiometry. In support of this hypothesis, we observe that genes encoding the same protein complex have similar replication timing but mainly in fast-proliferating cells such as embryonic stem cells and cancer cells. We find that the synchronized replication observed in cancer cells, but not in slow-proliferating differentiated cells, is due to convergent evolution during tumorigenesis that restores synchronized replication timing within protein complexes. Taken together, our study reveals that the demand for dosage balance during S phase plays an important role in the optimization of the replication-timing program; this selection is relaxed during differentiation as the cell cycle prolongs and is restored during tumorigenesis as the cell cycle shortens.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.,Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Rivera-Mulia JC, Kim S, Gabr H, Chakraborty A, Ay F, Kahveci T, Gilbert DM. Replication timing networks reveal a link between transcription regulatory circuits and replication timing control. Genome Res 2019; 29:1415-1428. [PMID: 31434679 PMCID: PMC6724675 DOI: 10.1101/gr.247049.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they constitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of cell-type-specific TRNs and RT control during lineage specification.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sebo Kim
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
20
|
Wu X, Kabalane H, Kahli M, Petryk N, Laperrousaz B, Jaszczyszyn Y, Drillon G, Nicolini FE, Perot G, Robert A, Fund C, Chibon F, Xia R, Wiels J, Argoul F, Maguer-Satta V, Arneodo A, Audit B, Hyrien O. Developmental and cancer-associated plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-replicating regions. Nucleic Acids Res 2019; 46:10157-10172. [PMID: 30189101 PMCID: PMC6212843 DOI: 10.1093/nar/gky797] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.
Collapse
Affiliation(s)
- Xia Wu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France.,Physics Department, East China Normal University, Shanghai, China
| | - Hadi Kabalane
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Malik Kahli
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Bastien Laperrousaz
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France.,CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guenola Drillon
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Frank-Emmanuel Nicolini
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France.,Centre Léon Bérard, F-69008 Lyon, France
| | - Gaëlle Perot
- INSERM U1218, Institut Bergonié, F-33000 Bordeaux, France
| | - Aude Robert
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Cédric Fund
- École Normale Supérieure, PSL Research University, CNRS, Inserm, IBENS, Plateforme Génomique, 75005 Paris, France
| | | | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
| | - Joëlle Wiels
- UMR 8126, Université Paris-Sud Paris-Saclay, CNRS, Institut Gustave Roussy, Villejuif, France
| | - Françoise Argoul
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F- 69008 Lyon, France
| | - Alain Arneodo
- LOMA, Université de Bordeaux, CNRS, UMR 5798, F-33405 Talence, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Olivier Hyrien
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| |
Collapse
|
21
|
Poulet A, Li B, Dubos T, Rivera-Mulia JC, Gilbert DM, Qin ZS. RT States: systematic annotation of the human genome using cell type-specific replication timing programs. Bioinformatics 2019; 35:2167-2176. [PMID: 30475980 PMCID: PMC6681175 DOI: 10.1093/bioinformatics/bty957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION The replication timing (RT) program has been linked to many key biological processes including cell fate commitment, 3D chromatin organization and transcription regulation. Significant technology progress now allows to characterize the RT program in the entire human genome in a high-throughput and high-resolution fashion. These experiments suggest that RT changes dynamically during development in coordination with gene activity. Since RT is such a fundamental biological process, we believe that an effective quantitative profile of the local RT program from a diverse set of cell types in various developmental stages and lineages can provide crucial biological insights for a genomic locus. RESULTS In this study, we explored recurrent and spatially coherent combinatorial profiles from 42 RT programs collected from multiple lineages at diverse differentiation states. We found that a Hidden Markov Model with 15 hidden states provide a good model to describe these genome-wide RT profiling data. Each of the hidden state represents a unique combination of RT profiles across different cell types which we refer to as 'RT states'. To understand the biological properties of these RT states, we inspected their relationship with chromatin states, gene expression, functional annotation and 3D chromosomal organization. We found that the newly defined RT states possess interesting genome-wide functional properties that add complementary information to the existing annotation of the human genome. AVAILABILITY AND IMPLEMENTATION R scripts for inferring HMM models and Perl scripts for further analysis are available https://github.com/PouletAxel/script_HMM_Replication_timing. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Hiratani I, Takahashi S. DNA Replication Timing Enters the Single-Cell Era. Genes (Basel) 2019; 10:genes10030221. [PMID: 30884743 PMCID: PMC6470765 DOI: 10.3390/genes10030221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
In mammalian cells, DNA replication timing is controlled at the level of megabase (Mb)-sized chromosomal domains and correlates well with transcription, chromatin structure, and three-dimensional (3D) genome organization. Because of these properties, DNA replication timing is an excellent entry point to explore genome regulation at various levels and a variety of studies have been carried out over the years. However, DNA replication timing studies traditionally required at least tens of thousands of cells, and it was unclear whether the replication domains detected by cell population analyses were preserved at the single-cell level. Recently, single-cell DNA replication profiling methods became available, which revealed that the Mb-sized replication domains detected by cell population analyses were actually well preserved in individual cells. In this article, we provide a brief overview of our current knowledge on DNA replication timing regulation in mammals based on cell population studies, outline the findings from single-cell DNA replication profiling, and discuss future directions and challenges.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
23
|
Du Q, Bert SA, Armstrong NJ, Caldon CE, Song JZ, Nair SS, Gould CM, Luu PL, Peters T, Khoury A, Qu W, Zotenko E, Stirzaker C, Clark SJ. Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nat Commun 2019; 10:416. [PMID: 30679435 PMCID: PMC6345877 DOI: 10.1038/s41467-019-08302-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/27/2018] [Indexed: 11/08/2022] Open
Abstract
DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Saul A Bert
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, School of Engineering and Information Technology, Murdoch University, Perth, 6150, WA, Australia
| | - C Elizabeth Caldon
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
- Replication and Genome Stability, Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Jenny Z Song
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Shalima S Nair
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Timothy Peters
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Amanda Khoury
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Wenjia Qu
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Elena Zotenko
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Clare Stirzaker
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia.
| |
Collapse
|
24
|
Gorlov IP, Gorlova OY, Amos CI. Untouchable genes in the human genome: Identifying ideal targets for cancer treatment. Cancer Genet 2019; 231-232:67-79. [PMID: 30803560 DOI: 10.1016/j.cancergen.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Usually, genes with a higher-than-expected number of somatic mutations in tumor samples are assumed to be cancer related. We identified genes with a fewer-than-expected number of somatic mutations - "untouchable genes". METHODS To predict the expected number of somatic mutations, we used a linear regression model with the number of mutations in the gene as an outcome, and gene characteristics, including gene size, nucleotide composition, level of evolutionary conservation, expression level and others, as predictors. Analysis of residuals from the regression model was used to compare the observed and predicted number of mutations. RESULTS We have identified 19 genes with a less-than-expected number of loss-off-function (nonsense, frameshift or pathogenic missense) mutations - i.e., untouchable genes. The number of silent or neutral missense mutations in untouchable genes was equal or higher than the expected number. Many mucins, including MUC16, MUC17, MUC6, MUC5AC, MUC5B, and MUC12, are untouchable. We hypothesized that untouchable mucins help tumor cells to avoid immune response by providing a protective coat that prevents direct contact between effector immune cells, e.g., cytotoxic T-cells, and tumor cells. Survival analysis of available TCGA data demonstrated that overall survival of patients with low (below the median) expression of untouchable mucins was better compared to patients with high expression of untouchable mucins. Aside from mucins, we have identified a number of other untouchable genes. CONCLUSIONS Untouchable genes may be ideal targets for cancer treatment since suppression of untouchable genes is expected to inhibit survival of tumor cells.
Collapse
Affiliation(s)
- Ivan P Gorlov
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States.
| | - Olga Y Gorlova
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
25
|
Gorlov IP, Pikielny CW, Frost HR, Her SC, Cole MD, Strohbehn SD, Wallace-Bradley D, Kimmel M, Gorlova OY, Amos CI. Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples. BMC Bioinformatics 2018; 19:430. [PMID: 30453881 PMCID: PMC6245819 DOI: 10.1186/s12859-018-2455-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Because driver mutations provide selective advantage to the mutant clone, they tend to occur at a higher frequency in tumor samples compared to selectively neutral (passenger) mutations. However, mutation frequency alone is insufficient to identify cancer genes because mutability is influenced by many gene characteristics, such as size, nucleotide composition, etc. The goal of this study was to identify gene characteristics associated with the frequency of somatic mutations in the gene in tumor samples. RESULTS We used data on somatic mutations detected by genome wide screens from the Catalog of Somatic Mutations in Cancer (COSMIC). Gene size, nucleotide composition, expression level of the gene, relative replication time in the cell cycle, level of evolutionary conservation and other gene characteristics (totaling 11) were used as predictors of the number of somatic mutations. We applied stepwise multiple linear regression to predict the number of mutations per gene. Because missense, nonsense, and frameshift mutations are associated with different sets of gene characteristics, they were modeled separately. Gene characteristics explain 88% of the variation in the number of missense, 40% of nonsense, and 23% of frameshift mutations. Comparisons of the observed and expected numbers of mutations identified genes with a higher than expected number of mutations- positive outliers. Many of these are known driver genes. A number of novel candidate driver genes was also identified. CONCLUSIONS By comparing the observed and predicted number of mutations in a gene, we have identified known cancer-associated genes as well as 111 novel cancer associated genes. We also showed that adding the number of silent mutations per gene reported by genome/exome wide screens across all cancer type (COSMIC data) as a predictor substantially exceeds predicting accuracy of the most popular cancer gene predicting tool - MutsigCV.
Collapse
Affiliation(s)
- Ivan P Gorlov
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon.
| | - Claudio W Pikielny
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - Hildreth R Frost
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - Stephanie C Her
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - Michael D Cole
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - Samuel D Strohbehn
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - David Wallace-Bradley
- Department of Statistics, Rice University, M.S. 138, 6100 Main Street, Houston, TX, 77005, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, M.S. 138, 6100 Main Street, Houston, TX, 77005, USA
| | - Olga Y Gorlova
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| | - Christopher I Amos
- The Geisel School of Medicine, Department of Biomedical Data Science, Dartmouth College, HB7936, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Beirut, NH, 03756, Lebanon
| |
Collapse
|
26
|
Armstrong RL, Penke TJR, Strahl BD, Matera AG, McKay DJ, MacAlpine DM, Duronio RJ. Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res 2018; 28:1688-1700. [PMID: 30279224 PMCID: PMC6211642 DOI: 10.1101/gr.239913.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure has emerged as a key contributor to spatial and temporal control over the initiation of DNA replication. However, despite genome-wide correlations between early replication of gene-rich, accessible euchromatin and late replication of gene-poor, inaccessible heterochromatin, a causal relationship between chromatin structure and replication initiation remains elusive. Here, we combined histone gene engineering and whole-genome sequencing in Drosophila to determine how perturbing chromatin structure affects replication initiation. We found that most pericentric heterochromatin remains late replicating in H3K9R mutants, even though H3K9R pericentric heterochromatin is depleted of HP1a, more accessible, and transcriptionally active. These data indicate that HP1a loss, increased chromatin accessibility, and elevated transcription do not result in early replication of heterochromatin. Nevertheless, a small amount of pericentric heterochromatin with increased accessibility replicates earlier in H3K9R mutants. Transcription is de-repressed in these regions of advanced replication but not in those regions of the H3K9R mutant genome that replicate later, suggesting that transcriptional repression may contribute to late replication. We also explored relationships among chromatin, transcription, and replication in euchromatin by analyzing H4K16R mutants. In Drosophila, the X Chromosome gene expression is up-regulated twofold and replicates earlier in XY males than it does in XX females. We found that H4K16R mutation prevents normal male development and abrogates hyperexpression and earlier replication of the male X, consistent with previously established genome-wide correlations between transcription and early replication. In contrast, H4K16R females are viable and fertile, indicating that H4K16 modification is dispensable for genome replication and gene expression.
Collapse
Affiliation(s)
- Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Taylor J R Penke
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
27
|
Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia JC, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S, Odom DT, Stamatoyannopoulos JA, Broach JR, Hardison RC, Ay F, Noble WS, Dekker J, Gilbert DM, Yue F. Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 2018; 50:1388-1398. [PMID: 30202056 PMCID: PMC6301019 DOI: 10.1038/s41588-018-0195-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
Abstract
Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.
Collapse
Affiliation(s)
- Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fan Song
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Victoria T Le
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Darrin V Bann
- Division of Otolaryngology, Head & Neck Surgery, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yanli Wang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Royden Clark
- Penn State College of Medicine, Informatics and Technology, Hershey, PA, USA
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Sriranga Iyyanki
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Lin An
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Christopher Pool
- Division of Otolaryngology, Head & Neck Surgery, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rajinder Kaul
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | | | - Kristen Lee
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | - Morgan Diegel
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | - Dubravka Pezic
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Christina Ernst
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | | | - James R Broach
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA.
| |
Collapse
|
28
|
Yang Y, Gu Q, Zhang Y, Sasaki T, Crivello J, O'Neill RJ, Gilbert DM, Ma J. Continuous-Trait Probabilistic Model for Comparing Multi-species Functional Genomic Data. Cell Syst 2018; 7:208-218.e11. [PMID: 29936186 PMCID: PMC6107375 DOI: 10.1016/j.cels.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 01/22/2023]
Abstract
A large amount of multi-species functional genomic data from high-throughput assays are becoming available to help understand the molecular mechanisms for phenotypic diversity across species. However, continuous-trait probabilistic models, which are key to such comparative analysis, remain under-explored. Here we develop a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic features in a genome-wide manner. Both simulation studies and real data application demonstrate the effectiveness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA replication timing (RT) dataset from the same cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey). We demonstrate that our Phylo-HMGP model enables discovery of genomic regions with distinct evolutionary patterns of RT. Our method provides a generic framework for comparative analysis of multi-species continuous functional genomic signals to help reveal regions with conserved or lineage-specific regulatory roles.
Collapse
Affiliation(s)
- Yang Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Quanquan Gu
- Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Julianna Crivello
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
29
|
Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 2018; 46:7022-7039. [PMID: 29893918 PMCID: PMC6101545 DOI: 10.1093/nar/gky498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
30
|
Rivera-Mulia JC, Schwerer H, Besnard E, Desprat R, Trevilla-Garcia C, Sima J, Bensadoun P, Zouaoui A, Gilbert DM, Lemaitre JM. Cellular senescence induces replication stress with almost no affect on DNA replication timing. Cell Cycle 2018; 17:1667-1681. [PMID: 29963964 DOI: 10.1080/15384101.2018.1491235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.
Collapse
Affiliation(s)
| | - Hélène Schwerer
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Emilie Besnard
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Romain Desprat
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | | | - Jiao Sima
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA
| | - Paul Bensadoun
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France
| | - Anissa Zouaoui
- c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| | - David M Gilbert
- a Department of Biological Science , Florida State University , Tallahassee , FL , USA.,d Center for Genomics and Personalized Medicine , Florida State University , Tallahassee , FL , USA
| | - Jean-Marc Lemaitre
- b Laboratory of Genome and Stem Cell Plasticity in Development and Aging , Institute of Regenerative Medicine, U1183, Université de Montpellier , Montpellier Cedex , France.,c Stem cell Core Facility SAFE-iPS INGESTEM , CHU Montpellier, Saint Eloi Hospital , Montpellier Cedex , France
| |
Collapse
|
31
|
Rivera-Mulia JC, Dimond A, Vera D, Trevilla-Garcia C, Sasaki T, Zimmerman J, Dupont C, Gribnau J, Fraser P, Gilbert DM. Allele-specific control of replication timing and genome organization during development. Genome Res 2018; 28:800-811. [PMID: 29735606 PMCID: PMC5991511 DOI: 10.1101/gr.232561.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Andrew Dimond
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Daniel Vera
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Claudia Trevilla-Garcia
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jared Zimmerman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Catherine Dupont
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, University Medical Center, 3015GE Rotterdam, The Netherlands
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
32
|
Siefert JC, Clowdus EA, Goins D, Koren A, Sansam CL. Profiling DNA Replication Timing Using Zebrafish as an In Vivo Model System. J Vis Exp 2018. [PMID: 29757277 DOI: 10.3791/57146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
DNA replication timing is an important cellular characteristic, exhibiting significant relationships with chromatin structure, transcription, and DNA mutation rates. Changes in replication timing occur during development and in cancer, but the role replication timing plays in development and disease is not known. Zebrafish were recently established as an in vivo model system to study replication timing. Here is detailed the protocols for using the zebrafish to determine DNA replication timing. After sorting cells from embryos and adult zebrafish, high-resolution genome-wide DNA replication timing patterns can be constructed by determining changes in DNA copy number through analysis of next generation sequencing data. The zebrafish model system allows for evaluation of the replication timing changes that occur in vivo throughout development, and can also be used to assess changes in individual cell types, disease models, or mutant lines. These methods will enable studies investigating the mechanisms and determinants of replication timing establishment and maintenance during development, the role replication timing plays in mutations and tumorigenesis, and the effects of perturbing replication timing on development and disease.
Collapse
Affiliation(s)
- Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation; Department of Cell Biology, University of Oklahoma Health Sciences Center
| | - Emily A Clowdus
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation; Department of Cell Biology, University of Oklahoma Health Sciences Center
| | - Duane Goins
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University
| | - Christopher L Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation; Department of Cell Biology, University of Oklahoma Health Sciences Center;
| |
Collapse
|
33
|
Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq. Nat Protoc 2018; 13:819-839. [PMID: 29599440 DOI: 10.1038/nprot.2017.148] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.
Collapse
|
34
|
Sima J, Bartlett DA, Gordon MR, Gilbert DM. Bacterial artificial chromosomes establish replication timing and sub-nuclear compartment de novo as extra-chromosomal vectors. Nucleic Acids Res 2018; 46:1810-1820. [PMID: 29294101 PMCID: PMC5829748 DOI: 10.1093/nar/gkx1265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
The role of DNA sequence in determining replication timing (RT) and chromatin higher order organization remains elusive. To address this question, we have developed an extra-chromosomal replication system (E-BACs) consisting of ∼200 kb human bacterial artificial chromosomes (BACs) modified with Epstein-Barr virus (EBV) stable segregation elements. E-BACs were stably maintained as autonomous mini-chromosomes in EBNA1-expressing HeLa or human induced pluripotent stem cells (hiPSCs) and established distinct RT patterns. An E-BAC harboring an early replicating chromosomal region replicated early during S phase, while E-BACs derived from RT transition regions (TTRs) and late replicating regions replicated in mid to late S phase. Analysis of E-BAC interactions with cellular chromatin (4C-seq) revealed that the early replicating E-BAC interacted broadly throughout the genome and preferentially with the early replicating compartment of the nucleus. In contrast, mid- to late-replicating E-BACs interacted with more specific late replicating chromosomal segments, some of which were shared between different E-BACs. Together, we describe a versatile system in which to study the structure and function of chromosomal segments that are stably maintained separately from the influence of cellular chromosome context.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL 32306, USA
| | - Daniel A Bartlett
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL 32306, USA
| | - Molly R Gordon
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL 32306, USA
| | - David M Gilbert
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
35
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
David L, Manenti S, Récher C, Hoffmann JS, Didier C. Targeting ATR/CHK1 pathway in acute myeloid leukemia to overcome chemoresistance. Mol Cell Oncol 2017; 4:e1289293. [PMID: 29057300 DOI: 10.1080/23723556.2017.1289293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/18/2022]
Abstract
Resistance of acute myeloid leukemia to current therapies leads to frequent relapses. Identification of molecular mechanisms involved in chemoresistance constitutes a key challenge to define new therapeutic concepts. Here, we show that the ATR/CHK1 pathway, essential in maintaining genomic stability, is involved in resistance and proliferation characteristics of leukemic cells.
Collapse
Affiliation(s)
- Laure David
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Stéphane Manenti
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Christian Récher
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean-Sébastien Hoffmann
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Christine Didier
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
37
|
Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the Replication Program Contribute to Genomic Instability in Cancer. Int J Mol Sci 2017; 18:E1138. [PMID: 28587102 PMCID: PMC5485962 DOI: 10.3390/ijms18061138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer and genomic instability are highly impacted by the deoxyribonucleic acid (DNA) replication program. Inaccuracies in DNA replication lead to the increased acquisition of mutations and structural variations. These inaccuracies mainly stem from loss of DNA fidelity due to replication stress or due to aberrations in the temporal organization of the replication process. Here we review the mechanisms and impact of these major sources of error to the replication program.
Collapse
Affiliation(s)
- Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Micha Ben-Zimra
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
38
|
Müller CA, Nieduszynski CA. DNA replication timing influences gene expression level. J Cell Biol 2017; 216:1907-1914. [PMID: 28539386 PMCID: PMC5496624 DOI: 10.1083/jcb.201701061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are replicated in a reproducible temporal order whose physiological significance is poorly understood. Müller and Nieduszynski compare the temporal order of genome replication in phylogenetically diverse yeast species and identify genes for which conserved replication timing contributes to maximal expression. Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1-HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression.
Collapse
Affiliation(s)
- Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | | |
Collapse
|
39
|
Sasaki T, Rivera-Mulia JC, Vera D, Zimmerman J, Das S, Padget M, Nakamichi N, Chang BH, Tyner J, Druker BJ, Weng AP, Civin CI, Eaves CJ, Gilbert DM. Stability of patient-specific features of altered DNA replication timing in xenografts of primary human acute lymphoblastic leukemia. Exp Hematol 2017; 51:71-82.e3. [PMID: 28433605 DOI: 10.1016/j.exphem.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/25/2017] [Accepted: 04/08/2017] [Indexed: 01/10/2023]
Abstract
Genome-wide DNA replication timing (RT) profiles reflect the global three-dimensional chromosome architecture of cells. They also provide a comprehensive and unique megabase-scale picture of cellular epigenetic state. Thus, normal differentiation involves reproducible changes in RT, and transformation generally perturbs these, although the potential effects of altered RT on the properties of transformed cells remain largely unknown. A major challenge to interrogating these issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In contrast, the ability of many human ALL cell populations to expand when transplanted into highly immunodeficient mice is well documented. To examine the stability of DNA RT profiles of serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that circumvents the need for bromodeoxyuridine incorporation to distinguish early versus late S-phase cells. Using this and more standard protocols, we found consistently strong retention in xenografts of the original patient-specific RT features. Moreover, in a case in which genomic analyses indicated changing subclonal dynamics in serial passages, the RT profiles tracked concordantly. These results indicate that DNA RT is a relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they suggest the power of this approach for future interrogation of the origin and consequences of altered DNA RT in ALL.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Daniel Vera
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL
| | - Jared Zimmerman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Sunny Das
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Michelle Padget
- Departments of Pediatrics and Physiology, Center for Stem Cell Biology & Regenerative Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Bill H Chang
- Division of Hematology and Oncology, Departments of Pediatrics and Medicine, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Jeff Tyner
- Department of Cell, Development, and Cancer Biology, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brian J Druker
- Department of Cell, Development, and Cancer Biology, and OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Curt I Civin
- Departments of Pediatrics and Physiology, Center for Stem Cell Biology & Regenerative Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL.
| |
Collapse
|
40
|
Miotto B. Comment l’approche génomique aide à comprendre le processus d’initiation de la réplication. Med Sci (Paris) 2017; 33:143-150. [DOI: 10.1051/medsci/20173302009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Yehuda Y, Blumenfeld B, Lehmann D, Simon I. Genome-wide Determination of Mammalian Replication Timing by DNA Content Measurement. J Vis Exp 2017. [PMID: 28190030 DOI: 10.3791/55157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Replication of the genome occurs during S phase of the cell cycle in a highly regulated process that ensures the fidelity of DNA duplication. Each genomic region is replicated at a distinct time during S phase through the simultaneous activation of multiple origins of replication. Time of replication (ToR) correlates with many genomic and epigenetic features and is linked to mutation rates and cancer. Comprehending the full genomic view of the replication program, in health and disease is a major future goal and challenge. This article describes in detail the "Copy Number Ratio of S/G1 for mapping genomic Time of Replication" method (herein called: CNR-ToR), a simple approach to map the genome wide ToR of mammalian cells. The method is based on the copy number differences between S phase cells and G1 phase cells. The CNR-ToR method is performed in 6 steps: 1. Preparation of cells and staining with propidium iodide (PI); 2. Sorting G1 and S phase cells using fluorescence-activated cell sorting (FACS); 3. DNA purification; 4. Sonication; 5. Library preparation and sequencing; and 6. Bioinformatic analysis. The CNR-ToR method is a fast and easy approach that results in detailed replication maps.
Collapse
Affiliation(s)
- Yishai Yehuda
- Dept. of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem
| | - Britny Blumenfeld
- Dept. of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem
| | - Dan Lehmann
- The Core Research Facility, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem
| | - Itamar Simon
- Dept. of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem;
| |
Collapse
|
42
|
David L, Fernandez-Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, Prade N, Cartel M, Larrue C, Sarry JE, Delabesse E, Cazaux C, Didier C, Récher C, Manenti S, Hoffmann JS. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal 2016; 9:ra90. [PMID: 27625304 DOI: 10.1126/scisignal.aac9704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.
Collapse
Affiliation(s)
- Laure David
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Anne Fernandez-Vidal
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Sarah Bertoli
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France
| | - Srdana Grgurevic
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Benoît Lepage
- Université Paul Sabatier, Toulouse, France. Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1027, Epidémiologie et analyses en santé publique: Risques, maladies chroniques et handicaps, Faculté de médecine, Toulouse, France
| | - Dominique Deshaies
- Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Naïs Prade
- Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Maëlle Cartel
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Clément Larrue
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Jean-Emmanuel Sarry
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Christophe Cazaux
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christine Didier
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christian Récher
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France.
| | - Stéphane Manenti
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| | - Jean-Sébastien Hoffmann
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
43
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
44
|
Siefert JC, Clowdus EA, Sansam CL. Cell cycle control in the early embryonic development of aquatic animal species. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:8-15. [PMID: 26475527 PMCID: PMC4755307 DOI: 10.1016/j.cbpc.2015.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023]
Abstract
The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease.
Collapse
Affiliation(s)
- Joseph C Siefert
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA
| | - Emily A Clowdus
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA
| | - Christopher L Sansam
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA.
| |
Collapse
|
45
|
Gabr H, Rivera-Mulia JC, Gilbert DM, Kahveci T. Computing interaction probabilities in signaling networks. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2015; 2015:10. [PMID: 26587014 PMCID: PMC4642599 DOI: 10.1186/s13637-015-0031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023]
Abstract
Biological networks inherently have uncertain topologies. This arises from many factors. For instance, interactions between molecules may or may not take place under varying conditions. Genetic or epigenetic mutations may also alter biological processes like transcription or translation. This uncertainty is often modeled by associating each interaction with a probability value. Studying biological networks under this probabilistic model has already been shown to yield accurate and insightful analysis of interaction data. However, the problem of assigning accurate probability values to interactions remains unresolved. In this paper, we present a novel method for computing interaction probabilities in signaling networks based on transcription levels of genes. The transcription levels define the signal reachability probability between membrane receptors and transcription factors. Our method computes the interaction probabilities that minimize the gap between the observed and the computed signal reachability probabilities. We evaluate our method on four signaling networks from the Kyoto Encyclopedia of Genes and Genomes (KEGG). For each network, we compute its edge probabilities using the gene expression profiles for seven major leukemia subtypes. We use these values to analyze how the stress induced by different leukemia subtypes affects signaling interactions.
Collapse
Affiliation(s)
- Haitham Gabr
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida, USA
| | | | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Tamer Kahveci
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Dileep V, Rivera-Mulia JC, Sima J, Gilbert DM. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:53-63. [PMID: 26590169 DOI: 10.1101/sqb.2015.80.027284] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chromosome architecture has received a lot of attention since the recent development of genome-scale methods to measure chromatin interactions (Hi-C), enabling the first sequence-based models of chromosome tertiary structure. A view has emerged of chromosomes as a string of structural units (topologically associating domains; TADs) whose boundaries persist through the cell cycle and development. TADs with similar chromatin states tend to aggregate, forming spatially segregated chromatin compartments. However, high-resolution Hi-C has revealed substructure within TADs (subTADs) that poses a challenge for models that attribute significance to structural units at any given scale. More than 20 years ago, the DNA replication field independently identified stable structural (and functional) units of chromosomes (replication foci) as well as spatially segregated chromatin compartments (early and late foci), but lacked the means to link these units to genomic map units. Genome-wide studies of replication timing (RT) have now merged these two disciplines by identifying individual units of replication regulation (replication domains; RDs) that correspond to TADs and are arranged in 3D to form spatiotemporally segregated subnuclear compartments. Furthermore, classifying RDs/TADs by their constitutive versus developmentally regulated RT has revealed distinct classes of chromatin organization, providing unexpected insight into the relationship between large-scale chromosome structure and function.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | | | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295 Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306-4295
| |
Collapse
|
47
|
Kuriya K, Higashiyama E, Avşar-Ban E, Tamaru Y, Ogata S, Takebayashi SI, Ogata M, Okumura K. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells. Zebrafish 2015; 12:432-9. [PMID: 26540100 DOI: 10.1089/zeb.2015.1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.
Collapse
Affiliation(s)
- Kenji Kuriya
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Higashiyama
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Avşar-Ban
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Yutaka Tamaru
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin Ogata
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin-ichiro Takebayashi
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Masato Ogata
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Katsuzumi Okumura
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| |
Collapse
|
48
|
Rivera-Mulia JC, Buckley Q, Sasaki T, Zimmerman J, Didier RA, Nazor K, Loring JF, Lian Z, Weissman S, Robins AJ, Schulz TC, Menendez L, Kulik MJ, Dalton S, Gabr H, Kahveci T, Gilbert DM. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Res 2015; 25:1091-103. [PMID: 26055160 PMCID: PMC4509994 DOI: 10.1101/gr.187989.114] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position. We generated genome-wide RT profiles for 26 distinct human cell types, including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm, and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures) and confirmed global consolidation of the genome into larger synchronously replicating segments during differentiation. Surprisingly, transcriptome data revealed that the well-accepted correlation between early replication and transcriptional activity was restricted to RT-constitutive genes, whereas two-thirds of the genes that switched RT during differentiation were strongly expressed when late replicating in one or more cell types. Closer inspection revealed that transcription of this class of genes was frequently restricted to the lineage in which the RT switch occurred, but was induced prior to a late-to-early RT switch and/or down-regulated after an early-to-late RT switch. Analysis of transcriptional regulatory networks showed that this class of genes contains strong regulators of genes that were only expressed when early replicating. These results provide intriguing new insight into the complex relationship between transcription and RT regulation during human development.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Quinton Buckley
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jared Zimmerman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Ruth A Didier
- College of Medicine, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Kristopher Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Zheng Lian
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Sherman Weissman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | - Laura Menendez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
49
|
Libbrecht MW, Ay F, Hoffman MM, Gilbert DM, Bilmes JA, Noble WS. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Res 2015; 25:544-57. [PMID: 25677182 PMCID: PMC4381526 DOI: 10.1101/gr.184341.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/06/2015] [Indexed: 11/24/2022]
Abstract
The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term “specific expression domains.” We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data.
Collapse
Affiliation(s)
- Maxwell W Libbrecht
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University of Toronto, ON M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada
| | - David M Gilbert
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32304, USA
| | - Jeffrey A Bilmes
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - William Stafford Noble
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
50
|
Topologically associating domains are stable units of replication-timing regulation. Nature 2015; 515:402-5. [PMID: 25409831 PMCID: PMC4251741 DOI: 10.1038/nature13986] [Citation(s) in RCA: 592] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Collapse
|