1
|
Gilbert G, Renaud Y, Teste C, Anglaret N, Bertrand R, Hoehn S, Jurkowski TP, Schuettengruber B, Cavalli G, Waltzer L, Vandel L. Drosophila TET acts with PRC1 to activate gene expression independently of its catalytic activity. SCIENCE ADVANCES 2024; 10:eadn5861. [PMID: 38701218 PMCID: PMC11068012 DOI: 10.1126/sciadv.adn5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.
Collapse
Affiliation(s)
- Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Camille Teste
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Nadège Anglaret
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Romane Bertrand
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Sven Hoehn
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Tomasz P. Jurkowski
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Bernd Schuettengruber
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Laurence Vandel
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping in the ON transcriptional state. SCIENCE ADVANCES 2024; 10:eadn1837. [PMID: 38657072 PMCID: PMC11042752 DOI: 10.1126/sciadv.adn1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P. Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Bamgbose G, Tulin A. PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development. Life Sci Alliance 2024; 7:e202302369. [PMID: 38012002 PMCID: PMC10682175 DOI: 10.26508/lsa.202302369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
PARP-1 participates in various cellular processes, including gene regulation. In Drosophila, PARP-1 mutants undergo developmental arrest during larval-to-pupal transition. In this study, we investigated PARP-1 binding and its transcriptional regulatory role at this stage. Our findings revealed that PARP-1 binds and represses active metabolic genes, including glycolytic genes, whereas activating low-expression developmental genes, including a subset of "bivalent" genes in third-instar larvae. These bivalent promoters, characterized by dual enrichment of low H3K4me3 and high H3K27me3, a unimodal H3K4me1 enrichment at the transcription start site (conserved in C. elegans and zebrafish), H2Av depletion, and high accessibility, may persist throughout development. In PARP-1 mutant third-instar larvae, metabolic genes typically down-regulated during the larval-to-pupal transition in response to reduced energy needs were repressed by PARP-1. Simultaneously, developmental and bivalent genes typically active at this stage were activated by PARP-1. In addition, glucose and ATP levels were significantly reduced in PARP-1 mutants, suggesting an imbalance in metabolic regulation. We propose that PARP-1 is essential for maintaining the delicate balance between metabolic and developmental gene expression programs to ensure proper developmental progression.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
4
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping mediated by Polycomb Response Elements in the ON transcriptional state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565256. [PMID: 38076900 PMCID: PMC10705551 DOI: 10.1101/2023.11.02.565256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polycomb group proteins (PcG) mediate epigenetic silencing of important developmental genes and other targets. In Drosophila, canonical PcG-target genes contain Polycomb Response Elements (PREs) that recruit PcG protein complexes including PRC2 that trimethylates H3K27 forming large H3K27me3 domains. In the OFF transcriptional state, PREs loop with each other and this looping strengthens silencing. Here we address the question of what PcG proteins bind to PREs when canonical PcG target genes are expressed, and whether PREs loop when these genes are ON. Our data show that the answer to this question is PRE-specific but general conclusions can be made. First, within a PcG-target gene, some regulatory DNA can remain covered with H3K27me3 and PcG proteins remain bound to PREs in these regions. Second, when PREs are within H3K27ac domains, PcG-binding decreases, however, this depends on the protein and PRE. The DNA binding protein GAF, and the PcG protein Ph remain at PREs even when other PcG proteins are greatly depleted. In the ON state, PREs can still loop with each other, but also form loops with presumptive enhancers. These data support the model that, in addition to their role in PcG silencing, PREs can act as "promoter-tethering elements" mediating interactions between promoter proximal PREs and distant enhancers.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Melnikova L, Molodina V, Babosha V, Kostyuchenko M, Georgiev P, Golovnin A. The MADF-BESS Protein CP60 Is Recruited to Insulators via CP190 and Has Redundant Functions in Drosophila. Int J Mol Sci 2023; 24:15029. [PMID: 37834476 PMCID: PMC10573801 DOI: 10.3390/ijms241915029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| |
Collapse
|
6
|
Brown JL, Price JD, Erokhin M, Kassis JA. Context-dependent role of Pho binding sites in Polycomb complex recruitment in Drosophila. Genetics 2023; 224:iyad096. [PMID: 37216193 PMCID: PMC10411561 DOI: 10.1093/genetics/iyad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes, but how these proteins are recruited to specific regions of the genome is still not completely understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) comprised of a flexible array of sites for sequence-specific DNA binding proteins, "PcG recruiters," including Pho, Spps, Cg, and GAF. Pho is thought to play a central role in PcG recruitment. Early data showed that mutation of Pho binding sites in PREs in transgenes abrogated the ability of those PREs to repress gene expression. In contrast, genome-wide experiments in pho mutants or by Pho knockdown showed that PcG proteins can bind to PREs in the absence of Pho. Here, we directly addressed the importance of Pho binding sites in 2 engrailed (en) PREs at the endogenous locus and in transgenes. Our results show that Pho binding sites are required for PRE activity in transgenes with a single PRE. In a transgene, 2 PREs together lead to stronger, more stable repression and confer some resistance to the loss of Pho binding sites. Making the same mutation in Pho binding sites has little effect on PcG-protein binding at the endogenous en gene. Overall, our data support the model that Pho is important for PcG binding but emphasize how multiple PREs and chromatin environment increase the ability of PREs to function in the absence of Pho. This supports the view that multiple mechanisms contribute to PcG recruitment in Drosophila.
Collapse
Affiliation(s)
- Janet Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Price
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
8
|
Erokhin M, Brown JL, Lomaev D, Vorobyeva NE, Zhang L, Fab L, Mazina M, Kulakovskiy I, Ziganshin R, Schedl P, Georgiev P, Sun MA, Kassis J, Chetverina D. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila. Nucleic Acids Res 2023; 51:6087-6100. [PMID: 37140047 PMCID: PMC10325914 DOI: 10.1093/nar/gkad336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - J Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Yu Mazina
- Group of hormone-dependent transcription regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow119991, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Paul Schedl
- Department of Molecular Biology Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
9
|
Salzler HR, Vandadi V, McMichael BD, Brown JC, Boerma SA, Leatham-Jensen MP, Adams KM, Meers MP, Simon JM, Duronio RJ, McKay DJ, Matera AG. Distinct roles for canonical and variant histone H3 lysine-36 in Polycomb silencing. SCIENCE ADVANCES 2023; 9:eadf2451. [PMID: 36857457 PMCID: PMC9977188 DOI: 10.1126/sciadv.adf2451] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
Polycomb complexes regulate cell type-specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent (H3.2K36R) or replication-independent (H3.3K36R) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined (H3.3K36RH3.2K36R) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive Polycomb response elements located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - John C. Brown
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Sally A. Boerma
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Mary P. Leatham-Jensen
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten M. Adams
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael P. Meers
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J. McKay
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
11
|
Torres-Campana D, Horard B, Denaud S, Benoit G, Loppin B, Orsi GA. Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain. PLoS Genet 2022; 18:e1009615. [PMID: 34982772 PMCID: PMC8759638 DOI: 10.1371/journal.pgen.1009615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/14/2022] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of a diploid zygote is a highly complex cellular process that is entirely controlled by maternal gene products stored in the egg cytoplasm. This highly specialized transcriptional program is tightly controlled at the chromatin level in the female germline. As an extreme case in point, the massive and specific ovarian expression of the essential thioredoxin Deadhead (DHD) is critically regulated in Drosophila by the histone demethylase Lid and its partner, the histone deacetylase complex Sin3A/Rpd3, via yet unknown mechanisms. Here, we identified Snr1 and Mod(mdg4) as essential for dhd expression and investigated how these epigenomic effectors act with Lid and Sin3A to hyperactivate dhd. Using Cut&Run chromatin profiling with a dedicated data analysis procedure, we found that dhd is intriguingly embedded in an H3K27me3/H3K9me3-enriched mini-domain flanked by DNA regulatory elements, including a dhd promoter-proximal element essential for its expression. Surprisingly, Lid, Sin3a, Snr1 and Mod(mdg4) impact H3K27me3 and this regulatory element in distinct manners. However, we show that these effectors activate dhd independently of H3K27me3/H3K9me3, and that dhd remains silent in the absence of these marks. Together, our study demonstrates an atypical and critical role for chromatin regulators Lid, Sin3A, Snr1 and Mod(mdg4) to trigger tissue-specific hyperactivation within a unique heterochromatin mini-domain. Multicellular development depends on a tight control of gene expression in each cell type. This relies on the coordinated activities of nuclear proteins that interact with DNA or its histone scaffold to promote or restrict gene transcription. For example, we previously showed that the histone modifying enzymes Lid and Sin3A/Rpd3 are required in Drosophila ovaries for the massive expression of deadhead (dhd), a gene encoding for a thioredoxin that is essential for fertility. In this paper, we have further identified two additional dhd regulators, Snr1 and Mod(mdg4) and dissected the mechanism behind hyperactivation of this gene. Using the epigenomic profiling method Cut&Run with a dedicated data analysis approach, we unexpectedly found that dhd is embedded in an unusual chromatin mini-domain featuring repressive histone modifications H3K27me3 and H3K9me3 and flanked by two regulatory elements. However, we further showed that Lid, Sin3A, Snr1 and Mod(mdg4) behave like obligatory activators of dhd independently of this mini-domain. Our study unveils how multiple broad-acting epigenomic effectors operate in non-canonical manners to ensure a critical and specialized gene activation event. These findings challenge our knowledge on these regulatory mechanisms and their roles in development and pathology.
Collapse
Affiliation(s)
- Daniela Torres-Campana
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sandrine Denaud
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, Montpellier, France
| | - Gérard Benoit
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| | - Guillermo A. Orsi
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| |
Collapse
|
12
|
Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ, Gibson TJ, Lundgren SM, Bondra ER, Deshmukh S, Harutyunyan AS, Juretic N, Jabado N, Harrison MM, Lewis PW. H3 K27M and EZHIP Impede H3K27-Methylation Spreading by Inhibiting Allosterically Stimulated PRC2. Mol Cell 2020; 80:726-735.e7. [PMID: 33049227 PMCID: PMC7680438 DOI: 10.1016/j.molcel.2020.09.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022]
Abstract
Diffuse midline gliomas and posterior fossa type A ependymomas contain the recurrent histone H3 lysine 27 (H3 K27M) mutation and express the H3 K27M-mimic EZHIP (CXorf67), respectively. H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo, these proteins reduce overall H3 lysine 27 trimethylation (H3K27me3) levels; however, residual peaks of H3K27me3 remain at CpG islands (CGIs) through an unknown mechanism. Here, we report that EZHIP and H3 K27M preferentially interact with PRC2 that is allosterically activated by H3K27me3 at CGIs and impede its spreading. Moreover, H3 K27M oncohistones reduce H3K27me3 in trans, independent of their incorporation into the chromatin. Although EZHIP is not found outside placental mammals, expression of human EZHIP reduces H3K27me3 in Drosophila melanogaster through a conserved mechanism. Our results provide mechanistic insights for the retention of residual H3K27me3 in tumors driven by H3 K27M and EZHIP.
Collapse
Affiliation(s)
- Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Andrew Q Rashoff
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Dominik Hoelper
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Truman J Do
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Stefan M Lundgren
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Eliana R Bondra
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Shriya Deshmukh
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Abstract
The Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2020 recipient is Welcome W. Bender of Harvard Medical School, recognizing his creativity and ingenuity in revealing the molecular nature and regulation of the bithorax gene complex.
Collapse
|
14
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|
15
|
Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects. J Biosci 2020. [DOI: 10.1007/s12038-019-9975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Srinivasan A, Mishra RK. Genomic organization of Polycomb Response Elements and its functional implication in Drosophila and other insects. J Biosci 2020; 45:12. [PMID: 31965990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The epigenetic memory is an essential aspect of multicellular organisms to maintain several cell types and their gene expression pattern. This complex process uses a number of protein factors and specific DNA elements within the developmental cues to achieve this. The protein factors involved in the process are the Polycomb group (PcG) members, and, accordingly, the DNA sequences that interact with these proteins are called Polycomb Response Elements (PREs). Since the PcG proteins are highly conserved among higher eukaryotes, including insects, and function at thousands of sites in the genomes, it is expected that PREs mayalso be present across the genome.However, the studies on PREs in insect species, other thanDrosophila, is currently lacking.We took a bioinformatics approach to develop an inclusive PRE prediction tool, 'PRE Mapper', to address this need. By applying this tool on the Drosophila melanogaster genome, we predicted greater than 20,000 PREs.When comparedwith the available PRE prediction methods, this tool shows far better performance by correctly identifying the in vivo binding sites of PcG proteins, identified by genome-scale ChIP experiments. Further analysis of the predicted PREs shows their cohabitation with chromatin domain boundary elements at several places in the Drosophila genome, possibly defining a composite epigenetic module.We analysed 10 insect genomes in this context and find several conserved features in PREs across the insect species with some variations in their occurrence frequency. These analyses leading to the identification of PREin insect genomes contribute to our understanding of epigenetic mechanisms in these organisms.
Collapse
Affiliation(s)
- Arumugam Srinivasan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
17
|
Affiliation(s)
- Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
18
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Tang P, Miri K, Varmuza S. Unique trophoblast chromatin environment mediated by the PcG protein SFMBT2. Biol Open 2019; 8:bio043638. [PMID: 31391163 PMCID: PMC6737984 DOI: 10.1242/bio.043638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Stem/progenitor cells are maintained by a chromatin environment, mediated in part by Polycomb group (PcG) proteins, which depress differentiation. The trophoblast-specific PcG protein SFMBT2 is known to be required for maintenance of trophoblast progenitors. Rather than binding to trophoblast-specific genes repressed in TSC, SFMBT2 is concentrated at chromocentres and regions rich in repetitive elements, specifically LINE sequences and major satellites, suggesting that it is involved in higher-order organization of the trophoblast genome. It is also found enriched at a subset of ncRNAs. Comparison of ChIP-seq datasets for other chromatin proteins reveals several stereotypical distribution patterns, suggesting that SFMBT2 interacts with several different types of chromatin complexes specific to the trophoblast lineage.
Collapse
Affiliation(s)
- Priscilla Tang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| | - Kamelia Miri
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| | - Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
20
|
Ahmad K, Spens AE. Separate Polycomb Response Elements control chromatin state and activation of the vestigial gene. PLoS Genet 2019; 15:e1007877. [PMID: 31425502 PMCID: PMC6730940 DOI: 10.1371/journal.pgen.1007877] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 09/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Patterned expression of many developmental genes is specified by transcription factor gene expression, but is thought to be refined by chromatin-mediated repression. Regulatory DNA sequences called Polycomb Response Elements (PREs) are required to repress some developmental target genes, and are widespread in genomes, suggesting that they broadly affect developmental programs. While PREs in transgenes can nucleate trimethylation on lysine 27 of the histone H3 tail (H3K27me3), none have been demonstrated to be necessary at endogenous chromatin domains. This failure is thought to be due to the fact that most endogenous H3K27me3 domains contain many PREs, and individual PREs may be redundant. In contrast to these ideas, we show here that PREs near the wing selector gene vestigial have distinctive roles at their endogenous locus, even though both PREs are repressors in transgenes. First, a PRE near the promoter is required for vestigial activation and not for repression. Second, only the distal PRE contributes to H3K27me3, but even removal of both PREs does not eliminate H3K27me3 across the vestigial domain. Thus, endogenous chromatin domains appear to be intrinsically marked by H3K27me3, and PREs appear required to enhance this chromatin modification to high levels at inactive genes.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| | - Amy E. Spens
- Division of Basic Sciences, FHCRC, Seattle, WA, United States of America
| |
Collapse
|
21
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
22
|
Schwartz (Berkaeva) MB, Pankova TE, Demakov SA. ADF1 and BEAF-32 chromatin proteins affect nucleosome positioning and DNA decompaction in 61C7/C8 interband region of Drosophila melanogaster polytene chromosomes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of interphase chromosomes is a multi-level process in which DNA is compacted several thousandfold by association with histones and non-histone proteins. The first step of compaction includes the formation of nucleosomes – the basic repeating units of chromatin. Further packaging occurs due to DNA binding to histone H1 and non-histone proteins involved in enhancer-promoter and insulator interactions. Under these conditions, the genome retains its functionality due to the dynamic and uneven DNA compaction along the chromatin fiber. Since the DNA compaction level affects the transcription activity of a certain genomic region, it is important to understand the interplay between the factors acting at different levels of the packaging process. Drosophila polytene chromosomes are an excellent model system for studying the molecular mechanisms that determine DNA compaction degree. The unevenness of DNA packaging along the chromatin fiber is easily observed along these chromosomes due to their large size and specific banding pattern. The purpose of this study was to figure out the role of two non-histone regulatory proteins, ADF1 and BEAF-32, in the DNA packaging process from nucleosome positioning to the establishment of the final chromosome structure. We studied the impact of mutations that affect ADF1 and BEAF-32 binding sites on the formation of 61C7/C8 interband – one of the decompacted regions of Drosophila polytene chromosomes. We show that such mutations led to the collapse of an interband, which was accompanied with increased nucleosome stability. We also find that ADF1 and BEAF-32 binding sites are essential for the rescue of lethality caused by the null allele of bantam microRNA gene located in the region 61C7/C8.
Collapse
|
23
|
Yao B, Li Y, Wang Z, Chen L, Poidevin M, Zhang C, Lin L, Wang F, Bao H, Jiao B, Lim J, Cheng Y, Huang L, Phillips BL, Xu T, Duan R, Moberg KH, Wu H, Jin P. Active N 6-Methyladenine Demethylation by DMAD Regulates Gene Expression by Coordinating with Polycomb Protein in Neurons. Mol Cell 2018; 71:848-857.e6. [PMID: 30078725 DOI: 10.1016/j.molcel.2018.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
A ten-eleven translocation (TET) ortholog exists as a DNA N6-methyladenine (6mA) demethylase (DMAD) in Drosophila. However, the molecular roles of 6mA and DMAD remain unexplored. Through genome-wide 6mA and transcriptome profiling in Drosophila brains and neuronal cells, we found that 6mA may epigenetically regulate a group of genes involved in neurodevelopment and neuronal functions. Mechanistically, DMAD interacts with the Trithorax-related complex protein Wds to maintain active transcription by dynamically demethylating intragenic 6mA. Accumulation of 6mA by depleting DMAD coordinates with Polycomb proteins and contributes to transcriptional repression of these genes. Our findings suggest that active 6mA demethylation by DMAD plays essential roles in fly CNS by orchestrating through added epigenetic mechanisms.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiqin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mickael Poidevin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Han Bao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Jiao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Junghwa Lim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Cheng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ranhui Duan
- State Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, Hunan 410078, China
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
La Fortezza M, Grigolon G, Cosolo A, Pindyurin A, Breimann L, Blum H, van Steensel B, Classen AK. DamID profiling of dynamic Polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics Chromatin 2018; 11:27. [PMID: 29871666 PMCID: PMC5987561 DOI: 10.1186/s13072-018-0196-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tracking dynamic protein–chromatin interactions in vivo is key to unravel transcriptional and epigenetic transitions in development and disease. However, limited availability and heterogeneous tissue composition of in vivo source material impose challenges on many experimental approaches. Results Here we adapt cell-type-specific DamID-seq profiling for use in Drosophila imaginal discs and make FLP/FRT-based induction accessible to GAL driver-mediated targeting of specific cell lineages. In a proof-of-principle approach, we utilize ubiquitous DamID expression to describe dynamic transitions of Polycomb-binding sites during wing imaginal disc development and in a scrib tumorigenesis model. We identify Atf3 and Ets21C as novel Polycomb target genes involved in scrib tumorigenesis and suggest that target gene regulation by Atf3 and AP-1 transcription factors, as well as modulation of insulator function, plays crucial roles in dynamic Polycomb-binding at target sites. We establish these findings by DamID-seq analysis of wing imaginal disc samples derived from 10 larvae. Conclusions Our study opens avenues for robust profiling of small cell population in imaginal discs in vivo and provides insights into epigenetic changes underlying transcriptional responses to tumorigenic transformation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0196-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco La Fortezza
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Giovanna Grigolon
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | - Andrea Cosolo
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Alexey Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Laura Breimann
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany.,Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Bas van Steensel
- Division Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Planegg, Martinsried, Germany. .,Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.
| |
Collapse
|
25
|
Global changes of H3K27me3 domains and Polycomb group protein distribution in the absence of recruiters Spps or Pho. Proc Natl Acad Sci U S A 2018; 115:E1839-E1848. [PMID: 29432187 DOI: 10.1073/pnas.1716299115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes in animals, but how these proteins are recruited to specific regions of the genome is still poorly understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) that include combinations of sites for sequence specific DNA binding "PcG recruiters," including Pho, Cg, and Spps. To understand their roles in PcG recruitment, we compared Pho-, Cg-, and Spps-binding sites against H3K27me3 and key PcG proteins by ChIP-seq in wild-type and mutant third instar larvae. H3K27me3 in canonical Polycomb domains is decreased after the reduction of any recruiter. Reduction of Spps and Pho, but not Cg, causes the redistribution of H3K27me3 to heterochromatin. Regions with dramatically depleted H3K27me3 after Spps knockout are usually accompanied by decreased Pho binding, suggesting their cooperative binding. PcG recruiters, the PRC2 component E(z), and the PRC1 components Psc and Ph cobind thousands of active genes outside of H3K27me3 domains. This study demonstrates the importance of distinct PcG recruiters for the establishment of unique Polycomb domains. Different PcG recruiters can act both cooperatively and independently at specific PcG target genes, highlighting the complexity and diversity of PcG recruitment mechanisms.
Collapse
|
26
|
|
27
|
Afik S, Bartok O, Artyomov MN, Shishkin AA, Kadri S, Hanan M, Zhu X, Garber M, Kadener S. Defining the 5΄ and 3΄ landscape of the Drosophila transcriptome with Exo-seq and RNaseH-seq. Nucleic Acids Res 2017; 45:e95. [PMID: 28335028 PMCID: PMC5499799 DOI: 10.1093/nar/gkx133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/15/2017] [Indexed: 01/19/2023] Open
Abstract
Cells regulate biological responses in part through changes in transcription start sites (TSS) or cleavage and polyadenylation sites (PAS). To fully understand gene regulatory networks, it is therefore critical to accurately annotate cell type-specific TSS and PAS. Here we present a simple and straightforward approach for genome-wide annotation of 5΄- and 3΄-RNA ends. Our approach reliably discerns bona fide PAS from false PAS that arise due to internal poly(A) tracts, a common problem with current PAS annotation methods. We applied our methodology to study the impact of temperature on the Drosophila melanogaster head transcriptome. We found hundreds of previously unidentified TSS and PAS which revealed two interesting phenomena: first, genes with multiple PASs tend to harbor a motif near the most proximal PAS, which likely represents a new cleavage and polyadenylation signal. Second, motif analysis of promoters of genes affected by temperature suggested that boundary element association factor of 32 kDa (BEAF-32) and DREF mediates a transcriptional program at warm temperatures, a result we validated in a fly line where beaf-32 is downregulated. These results demonstrate the utility of a high-throughput platform for complete experimental and computational analysis of mRNA-ends to improve gene annotation.
Collapse
Affiliation(s)
- Shaked Afik
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabah Kadri
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
28
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
29
|
Sex combs reduced (Scr) regulatory region of Drosophila revisited. Mol Genet Genomics 2017; 292:773-787. [DOI: 10.1007/s00438-017-1309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
30
|
Single vector non-leaky gene expression system for Drosophila melanogaster. Sci Rep 2017; 7:6899. [PMID: 28761084 PMCID: PMC5537222 DOI: 10.1038/s41598-017-07282-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 12/28/2022] Open
Abstract
An ideal transgenic gene expression system is inducible, non-leaky, and well tolerated by the target organism. While the former has been satisfactorily realized, leakiness and heavy physiological burden imposed by the existing systems are still prominent hurdles in their successful implementation. Here we describe a new system for non-leaky expression of transgenes in Drosophila. PRExpress is based on a single transgenic construct built from endogenous components, the inducible hsp70 promoter and a multimerized copy of a Polycomb response element (PRE) controlled by epigenetic chromatin regulators of the Polycomb group. We show that this system is non-leaky, rapidly and strongly inducible, and reversible. To make the application of PRExpress user-friendly, we deliver the construct via site-specific integration.
Collapse
|
31
|
Dutta P, Li WX. The SERTAD protein Taranis plays a role in Polycomb-mediated gene repression. PLoS One 2017; 12:e0180026. [PMID: 28665982 PMCID: PMC5493352 DOI: 10.1371/journal.pone.0180026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Abstract
The Polycomb group (PcG) proteins have been implicated in epigenetic transcriptional repression in development, stem cell maintenance and in cancer. The chromodomain protein Polycomb (Pc) is a key member of the PcG. Pc binds to the histone mark, trimethylated histone 3 lysine 27 (H3K27me3), to initiate transcriptional repression. How PcG proteins are recruited to target loci is not fully understood. Here we show that the Drosophila SERTA domain protein Taranis (Tara) is involved in transcriptional regulation of Pc target genes. Embryos lacking Tara exhibit a partial homeotic transformation of cuticular the segments, a phenotype associated with the loss of Pc function. Moreover, Drosophila embryos homozygous for a tara hypomorphic allele also misexpress engrailed, a Pc-regulated gene, and this phenotype is associated with the loss of Pc binding to the cis response element in the engrailed enhancer. In relation to that, Pc recruitment is reduced on the salivary gland polytene chromosomes and specifically at the engrailed locus. These results suggest that Tara might be required for positioning Pc to a subset of its target genes.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | - Willis X. Li
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
32
|
|
33
|
Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One 2017; 12:e0173602. [PMID: 28296955 PMCID: PMC5351981 DOI: 10.1371/journal.pone.0173602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Drosophila GAGA factor (GAF) has an extraordinarily diverse set of functions that include the activation and silencing of gene expression, nucleosome organization and remodeling, higher order chromosome architecture and mitosis. One hypothesis that could account for these diverse activities is that GAF is able to interact with partners that have specific and dedicated functions. To test this possibility we used affinity purification coupled with high throughput mass spectrometry to identify GAF associated partners. Consistent with this hypothesis the GAF interacting network includes a large collection of factors and complexes that have been implicated in many different aspects of gene activity, chromosome structure and function. Moreover, we show that GAF interactions with a small subset of partners is direct; however for many others the interactions could be indirect, and depend upon intermediates that serve to diversify the functional capabilities of the GAF protein.
Collapse
Affiliation(s)
- Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mikhailova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - James J. Moresco
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Blokhina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
| | - Vladimir Ryabykh
- Institute of Animal Physiology, Biochemistry and Nutrition, Borovsk, Russia
| | - John R. Yates
- Department of Chemical Physiology, SR302B, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology Princeton University, Princeton, NJ, United States of America
- * E-mail: (DC); (PS); (PG)
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (DC); (PS); (PG)
| |
Collapse
|
34
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Maksimov DA, Laktionov PP, Belyakin SN. Data analysis algorithm for DamID-seq profiling of chromatin proteins in Drosophila melanogaster. Chromosome Res 2016; 24:481-494. [DOI: 10.1007/s10577-016-9538-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
|
36
|
ChIP-seq Data Processing for PcG Proteins and Associated Histone Modifications. Methods Mol Biol 2016. [PMID: 27659973 DOI: 10.1007/978-1-4939-6380-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chromatin Immunoprecipitation followed by massively parallel DNA sequencing (ChIP-sequencing) has emerged as an essential technique to study the genome-wide location of DNA- or chromatin-associated proteins, such as the Polycomb group (PcG) proteins. After being generated by the sequencer, raw ChIP-seq sequence reads need to be processed by a data analysis pipeline. Here we describe the computational steps required to process PcG ChIP-seq data, including alignment, peak calling, and downstream analysis.
Collapse
|
37
|
Laugesen A, Højfeldt JW, Helin K. Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026575. [PMID: 27449971 DOI: 10.1101/cshperspect.a026575] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chromatin environment is modulated by a machinery of chromatin modifiers, required for the specification and maintenance of cell fate. Many mutations in the machinery have been linked to the development and progression of cancer. In this review, we give a brief introduction to Polycomb group (PcG) proteins, their assembly into Polycomb repressive complexes (PRCs) and the normal physiological roles of these complexes with a focus on the PRC2. We review the many findings of mutations in the PRC2 coding genes, both loss-of-function and gain-of-function, associated with human cancers and discuss potential molecular mechanisms involved in the contribution of PRC2 mutations to cancer development and progression. Finally, we discuss some of the recent advances in developing and testing drugs targeting the PRC2 as well as emerging results from clinical trials using these drugs in the treatment of human cancers.
Collapse
Affiliation(s)
- Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
38
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
39
|
Ramachandran S, Henikoff S. Transcriptional Regulators Compete with Nucleosomes Post-replication. Cell 2016; 165:580-92. [PMID: 27062929 PMCID: PMC4855302 DOI: 10.1016/j.cell.2016.02.062] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Every nucleosome across the genome must be disrupted and reformed when the replication fork passes, but how chromatin organization is re-established following replication is unknown. To address this problem, we have developed Mapping In vivo Nascent Chromatin with EdU and sequencing (MINCE-seq) to characterize the genome-wide location of nucleosomes and other chromatin proteins behind replication forks at high temporal and spatial resolution. We find that the characteristic chromatin landscape at Drosophila promoters and enhancers is lost upon replication. The most conspicuous changes are at promoters that have high levels of RNA polymerase II (RNAPII) stalling and DNA accessibility and show specific enrichment for the BRM remodeler. Enhancer chromatin is also disrupted during replication, suggesting a role for transcription factor (TF) competition in nucleosome re-establishment. Thus, the characteristic nucleosome landscape emerges from a uniformly packaged genome by the action of TFs, RNAPII, and remodelers minutes after replication fork passage.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
40
|
Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3826-31. [PMID: 27001825 DOI: 10.1073/pnas.1520926113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as "Polycomb response elements" (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms.
Collapse
|
41
|
Vidal NM, Grazziotin AL, Iyer LM, Aravind L, Venancio TM. Transcription factors, chromatin proteins and the diversification of Hemiptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:1-13. [PMID: 26226651 PMCID: PMC4732926 DOI: 10.1016/j.ibmb.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus, differential use of DNA methylation and histone methylation might have played a role in emergence of polyphenism and cyclic parthenogenesis from the ancestral hemipteran.
Collapse
Affiliation(s)
- Newton M Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Ana Laura Grazziotin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
42
|
Orsi GA, Kasinathan S, Zentner GE, Henikoff S, Ahmad K. Mapping regulatory factors by immunoprecipitation from native chromatin. ACTA ACUST UNITED AC 2015; 110:21.31.1-21.31.25. [PMID: 25827087 DOI: 10.1002/0471142727.mb2131s110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin (ORGANIC) is a high-resolution method that can be used to quantitatively map protein-DNA interactions with high specificity and sensitivity. This method uses micrococcal nuclease (MNase) digestion of chromatin and low-salt solubilization to preserve protein-DNA complexes, followed by immunoprecipitation and paired-end sequencing for genome-wide mapping of binding sites. In this unit, we describe methods for isolation of nuclei and MNase digestion of unfixed chromatin, immunoprecipitation of protein-DNA complexes, and high-throughput sequencing to map sites of bound factors.
Collapse
Affiliation(s)
- Guillermo A Orsi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.,CNRS-UMR3664/Institut Curie-Centre de Recherche, Paris, France.,These authors contributed equally to this work
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington.,These authors contributed equally to this work
| | - Gabriel E Zentner
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Howard Hughes Medical Institute, Seattle, Washington
| | - Kami Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Blatti C, Kazemian M, Wolfe S, Brodsky M, Sinha S. Integrating motif, DNA accessibility and gene expression data to build regulatory maps in an organism. Nucleic Acids Res 2015; 43:3998-4012. [PMID: 25791631 PMCID: PMC4417154 DOI: 10.1093/nar/gkv195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
Characterization of cell type specific regulatory networks and elements is a major challenge in genomics, and emerging strategies frequently employ high-throughput genome-wide assays of transcription factor (TF) to DNA binding, histone modifications or chromatin state. However, these experiments remain too difficult/expensive for many laboratories to apply comprehensively to their system of interest. Here, we explore the potential of elucidating regulatory systems in varied cell types using computational techniques that rely on only data of gene expression, low-resolution chromatin accessibility, and TF–DNA binding specificities (‘motifs’). We show that static computational motif scans overlaid with chromatin accessibility data reasonably approximate experimentally measured TF–DNA binding. We demonstrate that predicted binding profiles and expression patterns of hundreds of TFs are sufficient to identify major regulators of ∼200 spatiotemporal expression domains in the Drosophila embryo. We are then able to learn reliable statistical models of enhancer activity for over 70 expression domains and apply those models to annotate domain specific enhancers genome-wide. Throughout this work, we apply our motif and accessibility based approach to comprehensively characterize the regulatory network of fruitfly embryonic development and show that the accuracy of our computational method compares favorably to approaches that rely on data from many experimental assays.
Collapse
Affiliation(s)
- Charles Blatti
- Department of Computer Science, University of Illinois, Urbana, IL 61801, USA
| | - Majid Kazemian
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scot Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michael Brodsky
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana, IL 61801, USA Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Abstract
The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.
Collapse
|
45
|
Kahn TG, Stenberg P, Pirrotta V, Schwartz YB. Combinatorial interactions are required for the efficient recruitment of pho repressive complex (PhoRC) to polycomb response elements. PLoS Genet 2014; 10:e1004495. [PMID: 25010632 PMCID: PMC4091789 DOI: 10.1371/journal.pgen.1004495] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies. Polycomb Group (PcG) proteins are epigenetic repressors essential for development and cell differentiation. PcG proteins form five complexes targeted to specific genes by Polycomb Response Elements (PREs). How PcG complexes are recruited to PREs is poorly understood. Here we investigate the recruitment of PhoRC, a seemingly simple case of a complex that contains a sequence-specific DNA binding subunit: PHO (or the related protein PHOL). Unexpectedly, we find that the sequence specific binding of PHO is not a primary determinant for recruitment of PhoRC to PRE, which depends on the non-DNA binding subunit SFMBT and cross-talk with another PcG complex, PRC1. The binding of PhoRC is helped by PRC1 and, in turn, may stabilize the binding of PRC1. We propose that the recruitment based on combinatorial interactions enables the conditional binding of PcG proteins, which is important for switching the state of the target genes from repressed to active. The critical role of the cross-talk between PhoRC and PRC1 is further supported by the finding that in mammals, where the protein domains linking the two complexes are missing, the PHO ortholog YY1 has no implication in PcG repression, despite 100% conservation between DNA binding domains of YY1 and PHO.
Collapse
Affiliation(s)
- Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (VP); (YBS)
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (VP); (YBS)
| |
Collapse
|