1
|
Characterization of Host-Specific Genes from Pine- and Grass-Associated Species of the Fusarium fujikuroi Species Complex. Pathogens 2022; 11:pathogens11080858. [PMID: 36014979 PMCID: PMC9415769 DOI: 10.3390/pathogens11080858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.
Collapse
|
2
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Belkorchia A, Pombert JF, Polonais V, Parisot N, Delbac F, Brugère JF, Peyret P, Gaspin C, Peyretaillade E. Comparative genomics of microsporidian genomes reveals a minimal non-coding RNA set and new insights for transcription in minimal eukaryotic genomes. DNA Res 2017; 24:251-260. [PMID: 28338834 PMCID: PMC5499648 DOI: 10.1093/dnares/dsx002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/21/2017] [Indexed: 11/14/2022] Open
Abstract
Microsporidia are ubiquitous intracellular pathogens whose opportunistic nature led to their increased recognition with the rise of the AIDS pandemic. As the RNA world was largely unexplored in this parasitic lineage, we developed a dedicated in silico methodology to carry out exhaustive identification of ncRNAs across the Encephalitozoon and Nosema genera. Thus, the previously missing U1 small nuclear RNA (snRNA) and small nucleolar RNAs (snoRNAs) targeting only the LSU rRNA were highlighted and were further validated using 5' and 3'RACE-PCR experiments. Overall, the 15 ncRNAs that were found shared between Encephalitozoon and Nosema spp. may represent the minimal core set required for parasitic life. Interestingly, the systematic presence of a CCC- or GGG-like motif in 5' of all ncRNA and mRNA gene transcripts regardless of the RNA polymerase involved suggests that the RNA polymerase machineries in microsporidia species could use common factors. Our data provide additional insights in accordance with the simplification processes observed in these reduce genomes and underline the usefulness of sequencing closely related species to help identify highly divergent ncRNAs in these parasites.
Collapse
Affiliation(s)
- Abdel Belkorchia
- Laboratoire "Microorganismes: Génome et Environnement", Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR 6023, LMGE, F-63171 Aubière, France
| | | | - Valérie Polonais
- Laboratoire "Microorganismes: Génome et Environnement", Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR 6023, LMGE, F-63171 Aubière, France
| | - Nicolas Parisot
- Université Clermont Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France
| | - Frédéric Delbac
- Laboratoire "Microorganismes: Génome et Environnement", Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR 6023, LMGE, F-63171 Aubière, France
| | - Jean-François Brugère
- Université Clermont Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France
| | | | - Eric Peyretaillade
- Université Clermont Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France
| |
Collapse
|
5
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
6
|
Dia N, Lavie L, Faye N, Méténier G, Yeramian E, Duroure C, Toguebaye BS, Frutos R, Niang MN, Vivarès CP, Ben Mamoun C, Cornillot E. Subtelomere organization in the genome of the microsporidian Encephalitozoon cuniculi: patterns of repeated sequences and physicochemical signatures. BMC Genomics 2016; 17:34. [PMID: 26744270 PMCID: PMC4704409 DOI: 10.1186/s12864-015-1920-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022] Open
Abstract
Background The microsporidian Encephalitozoon cuniculi is an obligate intracellular eukaryotic pathogen with a small nuclear genome (2.9 Mbp) consisting of 11 chromosomes. Although each chromosome end is known to contain a single rDNA unit, the incomplete assembly of subtelomeric regions following sequencing of the genome identified only 3 of the 22 expected rDNA units. While chromosome end assembly remains a difficult process in most eukaryotic genomes, it is of significant importance for pathogens because these regions encode factors important for virulence and host evasion. Results Here we report the first complete assembly of E. cuniculi chromosome ends, and describe a novel mosaic structure of segmental duplications (EXT repeats) in these regions. EXT repeats range in size between 3.5 and 23.8 kbp and contain four multigene families encoding membrane associated proteins. Twenty-one recombination sites were identified in the sub-terminal region of E. cuniculi chromosomes. Our analysis suggests that these sites contribute to the diversity of chromosome ends organization through Double Strand Break repair mechanisms. The region containing EXT repeats at chromosome extremities can be differentiated based on gene composition, GC content, recombination sites density and chromosome landscape. Conclusion Together this study provides the complete structure of the chromosome ends of E. cuniculi GB-M1, and identifies important factors, which could play a major role in parasite diversity and host-parasite interactions. Comparison with other eukaryotic genomes suggests that terminal regions could be distinguished precisely based on gene content, genetic instability and base composition biais. The diversity of processes assciated with chromosome extremities and their biological consequences, as they are presented in the present study, emphasize the fact that great effort will be necessary in the future to characterize more carefully these regions during whole genome sequencing efforts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1920-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ndongo Dia
- Unité de Virologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, B.P. 220, Dakar, Sénégal.
| | - Laurence Lavie
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Ngor Faye
- Laboratoire de Parasitologie Générale, Département de Biologie Animale, Faculté des Sciences et Technologies, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Guy Méténier
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Edouard Yeramian
- Unité de Bioinformatique Structurale, UMR 3528 CNRS, Institut Pasteur, 25-28, rue du Dr Roux, 75015, Paris, France.
| | - Christophe Duroure
- Laboratoire de Météorologie Physique, OPGC UMR 6016 CNRS-Université Blaise Pascal, 24 Avenue des Landais, 63177, Aubière Cedex, France.
| | - Bhen S Toguebaye
- Laboratoire de Parasitologie Générale, Département de Biologie Animale, Faculté des Sciences et Technologies, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Roger Frutos
- CIRAD, UMR 17, Cirad-Ird, TA-A17/G, Campus International de Baillarguet, 34398, Montpellier, France.
| | - Mbayame N Niang
- Unité de Virologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, B.P. 220, Dakar, Sénégal.
| | - Christian P Vivarès
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, UMR 6023, CNRS, 63177, Aubière, France.
| | - Choukri Ben Mamoun
- Section of Infectious Disease and Department of Microbial Pathogenesis, Winchester Building WWW403D, Yale School of Medicine, 15 York St., New Haven, CT, 06520, USA.
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier, IRCM - INSERM U1194 & Université de Montpellier & ICM, Institut régional du Cancer Montpellier, Campus Val d'Aurelle, 34298, Montpellier cedex 5, France. .,Institut de Biologie Computationnelle, IBC, Campus Saint Priest, 34090, Montpellier, France.
| |
Collapse
|
7
|
The Prediction and Validation of Small CDSs Expand the Gene Repertoire of the Smallest Known Eukaryotic Genomes. PLoS One 2015; 10:e0139075. [PMID: 26421846 PMCID: PMC4589312 DOI: 10.1371/journal.pone.0139075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of microsporidian genomes have revealed a poor gene complement with highly reduced gene sizes. In the present paper, we investigated whether such gene sizes may have induced biases for the methodologies used for genome annotation, with an emphasis on small coding sequence (CDS) gene prediction. Using better delineated intergenic regions from four Encephalitozoon genomes, we predicted de novo new small CDSs with sizes ranging from 78 to 255 bp (median 168) and corroborated these predictions by RACE-PCR experiments in Encephalitozoon cuniculi. Most of the newly found genes are present in other distantly related microsporidian species, suggesting their biological relevance. The present study provides a better framework for annotating microsporidian genomes and to train and evaluate new computational methods dedicated at detecting ultra-small genes in various organisms.
Collapse
|
8
|
Peyretaillade E, Boucher D, Parisot N, Gasc C, Butler R, Pombert JF, Lerat E, Peyret P. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems. Heredity (Edinb) 2014; 114:441-9. [PMID: 25182222 DOI: 10.1038/hdy.2014.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Fungal species play extremely important roles in ecosystems. Clustered at the base of the fungal kingdom are Microsporidia, a group of obligate intracellular eukaryotes infecting multiple animal lineages. Because of their large host spectrum and their implications in host population regulation, they influence food webs, and accordingly, ecosystem structure and function. Unfortunately, their ecological role is not well understood. Present also as highly resistant spores in the environment, their characterisation requires special attention. Different techniques based on direct isolation and/or molecular approaches can be considered to elucidate their role in the ecosystems, but integrating environmental and genomic data (for example, genome architecture, core genome, transcriptional and translational signals) is crucial to better understand the diversity and adaptive capacities of Microsporidia. Here, we review the current status of Microsporidia in trophic networks; the various genomics tools that could be used to ensure identification and evaluate diversity and abundance of these organisms; and how these tools could be used to explore the microsporidian life cycle in different environments. Our understanding of the evolution of these widespread parasites is currently impaired by limited sampling, and we have no doubt witnessed but a small subset of their diversity.
Collapse
Affiliation(s)
- E Peyretaillade
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - D Boucher
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - N Parisot
- 1] Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France [2] CNRS, UMR 6023, LMGE, Aubière, France
| | - C Gasc
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| | - R Butler
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - J-F Pombert
- Illinois Institute of Technology, BCHS Biology Division, Chicago, IL, USA
| | - E Lerat
- Université de Lyon, Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - P Peyret
- Genomics, Clermont Université, Université d'Auvergne, EA 4678 CIDAM, Clermont-Ferrand, France
| |
Collapse
|
9
|
Corradi N, Slamovits CH. The intriguing nature of microsporidian genomes. Brief Funct Genomics 2010; 10:115-24. [PMID: 21177329 DOI: 10.1093/bfgp/elq032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microsporidia are a group of highly adapted unicellular fungi that are known to infect a wide range of animals, including humans and species of great economic importance. These organisms are best known for their very simple cellular and genomic features, an adaptive consequence of their obligate intracellular parasitism. In the last decade, the acquisition of a large amount of genomic and transcriptomic data from several microsporidian species has greatly improved our understanding of the consequences of a purely intracellular lifestyle. In particular, genome sequence data from these pathogens has revealed how obligate intracellular parasitism can result in radical changes in the composition and structure of nuclear genomes and how these changes can affect cellular and evolutionary mechanisms that are otherwise well conserved among eukaryotes. This article reviews our current understanding of the genome content and structure of microsporidia, discussing their evolutionary origin and cataloguing the mechanisms that have often been involved in their extreme reduction.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Gendron Hall, ON, Canada.
| | | |
Collapse
|
10
|
Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 2010; 1:77. [PMID: 20865802 PMCID: PMC4355639 DOI: 10.1038/ncomms1082] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/25/2010] [Indexed: 12/20/2022] Open
Abstract
The genome of the microsporidia Encephalitozoon cuniculi is widely recognized as a model for extreme reduction and compaction. At only 2.9 Mbp, the genome encodes approximately 2,000 densely packed genes and little else. However, the nuclear genome of its sister, Encephalitozoon intestinalis, is even more reduced; at 2.3 Mbp, it represents a 20% reduction from an already severely compacted genome, raising the question, what else can be lost? In this paper, we describe the complete sequence of the E. intestinalis genome and its comparison with that of E. cuniculi. The two species share a conserved gene content, order and density over most of their genomes. The exceptions are the subtelomeric regions, where E. intestinalis chromosomes are missing large gene blocks of sequence found in E. cuniculi. In the remaining gene-dense chromosome 'cores', the diminutive intergenic sequences and introns are actually more highly conserved than the genes themselves, suggesting that they have reached the limits of reduction for a fully functional genome. A comparison of related genomes provides valuable information about how they evolve. Here, the complete sequence of the smallest known nuclear genome from the microsporidia E. intestinalis is described and compared with its larger sister E. cuniculi, revealing what parts are indispensable in even the most reduced genomes.
Collapse
Affiliation(s)
- Nicolas Corradi
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
11
|
Peyretaillade E, Gonçalves O, Terrat S, Dugat-Bony E, Wincker P, Cornman RS, Evans JD, Delbac F, Peyret P. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation. BMC Genomics 2009; 10:607. [PMID: 20003517 PMCID: PMC2803860 DOI: 10.1186/1471-2164-10-607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022] Open
Abstract
Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (~1 gene/kb) genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae) and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, BP 10448, F-63000 CLERMONT-FERRAND.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, Mayanja H, Tumwine JK, Keeling PJ, Weiss LM, Tzipori S. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathog 2009; 5:e1000261. [PMID: 19132089 PMCID: PMC2607024 DOI: 10.1371/journal.ppat.1000261] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 12/11/2008] [Indexed: 11/28/2022] Open
Abstract
Enterocytozoon bieneusi is the most common microsporidian associated with human disease, particularly in the immunocompromised population. In the setting of HIV infection, it is associated with diarrhea and wasting syndrome. Like all microsporidia, E. bieneusi is an obligate, intracellular parasite, but unlike others, it is in direct contact with the host cell cytoplasm. Studies of E. bieneusi have been greatly limited due to the absence of genomic data and lack of a robust cultivation system. Here, we present the first large-scale genomic dataset for E. bieneusi. Approximately 3.86 Mb of unique sequence was generated by paired end Sanger sequencing, representing about 64% of the estimated 6 Mb genome. A total of 3,804 genes were identified in E. bieneusi, of which 1,702 encode proteins with assigned functions. Of these, 653 are homologs of Encephalitozoon cuniculi proteins. Only one E. bieneusi protein with assigned function had no E. cuniculi homolog. The shared proteins were, in general, evenly distributed among the functional categories, with the exception of a dearth of genes encoding proteins associated with pathways for fatty acid and core carbon metabolism. Short intergenic regions, high gene density, and shortened protein-coding sequences were observed in the E. bieneusi genome, all traits consistent with genomic compaction. Our findings suggest that E. bieneusi is a likely model for extreme genome reduction and host dependence. Enterocytozoon bieneusi is a clinically significant pathogen associated with human microsporidiosis, particularly in immunocompromised individuals. E. bieneusi is widespread in mammals, and there is no effective commercial treatment for infection. The pathogen cannot be readily cultivated, and animal models are limited. We therefore undertook a sequence survey and generated the first large-scale genomic dataset for E. bieneusi, which we used to study the organization and structure of its genome and to perform a comparative analysis with Encephalitozoon cuniculi, another microsporidian whose genome has been completely sequenced. The E. bieneusi genome showed many traits associated with genome compaction including high gene density, short intergenic regions, shortened proteins, and few introns. With one exception, all E. bieneusi proteins with assigned functions had E. cuniculi homologs. We found a paucity of genes encoding proteins associated with fatty acid and carbon metabolism. The possibility that these core functions are reduced in an intracellular parasite is intriguing, but because the genome sequence of E. bieneusi is incomplete, we cannot exclude the possibility that additional proteins associated with the various metabolic pathways would be discovered in a completed genome.
Collapse
Affiliation(s)
- Donna E Akiyoshi
- Department of Biomedical Sciences, Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, Dean R, Farman M. Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 2006; 34:4685-701. [PMID: 16963777 PMCID: PMC1635262 DOI: 10.1093/nar/gkl588] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the ∼2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions—out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.
Collapse
Affiliation(s)
- Cathryn Rehmeyer
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Weixi Li
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Motoaki Kusaba
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Yun-Sik Kim
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
| | - Doug Brown
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Chuck Staben
- Department of Biology, University of KentuckyLexington, KY 40546 USA
| | - Ralph Dean
- Center for Integrated Fungal Research, North Carolina State UniversityRaleigh, NC 27695 USA
| | - Mark Farman
- Department of Plant Pathology, University of KentuckyLexington, KY 40546 USA
- To whom correspondence should be addressed. Tel: 859 257 7445, ext. 80728; Fax: 859 323 1961;
| |
Collapse
|
14
|
Upadhya R, Zhang HS, Weiss LM. System for expression of microsporidian methionine amino peptidase type 2 (MetAP2) in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother 2006; 50:3389-95. [PMID: 16917013 PMCID: PMC1610073 DOI: 10.1128/aac.00726-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are parasitic protists of all classes of vertebrates and most invertebrates. They recently emerged as important infections in various immunosuppressed and immunocompetent patient populations. They are also important veterinary and agricultural pathogens. Current therapies for microsporidiosis include benzimidazoles, which bind tubulin-inhibiting microtubule assembly, and fumagillin and its derivatives, which bind and inhibit methionine amino peptidase type 2 (MetAP2). Benzimidazoles are not active against Enterocytozoon bieneusi, the most common cause of human microsporidiosis. Fumagillin is active against most microsporidia, including E. bieneusi, but thrombocytopenia has been a problem in clinical trials. There is a pressing need for more-specific microsporidian MetAP2 inhibitors. To expedite and facilitate the discovery of safe and effective MetAP2 inhibitors, we have engineered Saccharomyces cerevisiae to be dependent on Encephalitozoon cuniculi MetAP2 (EcMetAP2) for its growth, where EcMetAP2 is harbored on an episomal uracil-selectable tetracycline-regulated plasmid. We have also constructed a leucine-selectable tetracycline-regulated expression plasmid into which any MetAP2 gene can be cloned. By utilizing a 5-fluoroorotic acid-mediated plasmid shuffle in the EcMetAP2 yeast strain, a yeast strain can be generated whose growth is dependent on MetAP2 from any organism. The level of heterologous MetAP2 gene expression can be controlled by the addition of tetracycline to the growth medium. These yeast strains should permit high-throughput screening for the identification of new inhibitors with high specificity and activity toward microsporidian MetAP2.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
15
|
Abstract
Telomeres are multifunctional genetic elements that cap chromosome ends, playing essential roles in genome stability, chromosome higher-order organization and proliferation control. The telomere field has largely benefited from the study of unicellular eukaryotic organisms such as yeasts. Easy cultivation in laboratory conditions and powerful genetics have placed mainly Saccharomyces cerevisiae, Kluveromyces lactis and Schizosaccharomyces pombe as crucial model organisms for telomere biology research. Studies in these species have made it possible to elucidate the basic mechanisms of telomere maintenance, function and evolution. Moreover, comparative genomic analyses show that telomeres have evolved rapidly among yeast species and functional plasticity emerges as one of the driving forces of this evolution. This provides a precious opportunity to further our understanding of telomere biology.
Collapse
Affiliation(s)
- M T Teixeira
- Laboratoire de Biologie Moléculaire de la Cellule of Ecole Normale Supérieure de Lyon, UMR CNRS/INRA/ENS, IFR 128 BioSciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France.
| | | |
Collapse
|
16
|
Keeling PJ, Slamovits CH. Causes and effects of nuclear genome reduction. Curr Opin Genet Dev 2005; 15:601-8. [PMID: 16188433 DOI: 10.1016/j.gde.2005.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Eukaryotic nuclear genomes are generally considered to be large and gene-sparse, but extreme reduction has taken place several times, resulting in small genomes with a high gene-density. This process involves losing genes, compacting those that remain, or often both. Recently sequenced nuclear genomes include several that have converged to similar gene-densities by many means: variation in numbers and lengths of genes, intergenic regions and introns all contribute, but not equally in any given genome. Genomes of microsporidia and nucleomorphs have taken compaction much further, and in these hyper-compacted genomes there is evidence that some basic processes such as gene expression might be affected by genome form. In these genomes, normally weak forces might become more significant drivers of genome evolution.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
17
|
Fuglsang A. A cytosine-rich region upstream of start codons serving as a signal for initiation of translation in Encephalitozoon cuniculi? Mol Biochem Parasitol 2005; 140:69-73. [PMID: 15694488 DOI: 10.1016/j.molbiopara.2004.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/08/2004] [Accepted: 12/10/2004] [Indexed: 11/23/2022]
Abstract
Encephalitozoon cuniculi, an intracellular eukaryote frequently infecting immunodeficient humans, displays pronounced compaction in its genes. Short-leaded mRNA has been observed which has led to speculation into alternative mechanisms of translation initiation. It has been proposed that a 'downstream box' could serve as an initiation signal. In this report, non-randomness analysis was used to study the genes of E. cuniculi. Surprisingly, it was found that the region 5-10nt upstream of start codons is highly cytosine-enriched and this phenomenon clearly differentiates genes of predicted high and low expressivity. These two groups of genes can, on the other hand, not be clearly differentiated from non-randomness plots downstream of their start codons. The data thus do not support the 'downstream box' hypothesis but seem to suggest that initiation is depending on the region immediately upstream of start codons. The cytosine richness has no known parallel in other eukaryotes, prokaryotes or archaebacteria.
Collapse
Affiliation(s)
- Anders Fuglsang
- Institute of Pharmacology, Danish University of Pharmaceutical Sciences, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
18
|
Rimour S, Hill D, Militon C, Peyret P. GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics 2004; 21:1094-103. [PMID: 15531611 DOI: 10.1093/bioinformatics/bti112] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The use of oligonucleotide microarray technology requires a very detailed attention to the design of specific probes spotted on the solid phase. These problems are far from being commonplace since they refer to complex physicochemical constraints. Whereas there are more and more publicly available programs for microarray oligonucleotide design, most of them use the same algorithm or criteria to design oligos, with only little variation. RESULTS We show that classical approaches used in oligo design software may be inefficient under certain experimental conditions, especially when dealing with complex target mixtures. Indeed, our biological model is a human obligate parasite, the microsporidia Encephalitozoon cuniculi. Targets that are extracted from biological samples are composed of a mixture of pathogen transcripts and host cell transcripts. We propose a new approach to design oligonucleotides which combines good specificity with a potentially high sensitivity. This approach is original in the biological point of view as well as in the algorithmic point of view. We also present an experimental validation of this new strategy by comparing results obtained with standard oligos and with our composite oligos. A specific E.cuniculi microarray will overcome the difficulty to discriminate the parasite mRNAs from the host cell mRNAs demonstrating the power of the microarray approach to elucidate the lifestyle of an intracellular pathogen using mix mRNAs.
Collapse
Affiliation(s)
- Sébastien Rimour
- LIMOS UMR CNRS 6158, Blaise Pascal University, Clermont-Ferrand II BP 10125, 63177 Aubiere Cedex, France.
| | | | | | | |
Collapse
|
19
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
20
|
Abstract
Microsporidia are a large group of microbial eukaryotes composed exclusively of obligate intracellular parasites of other eukaryotes. Almost 150 years of microsporidian research has led to a basic understanding of many aspects of microsporidian biology, especially their unique and highly specialized mode of infection, where the parasite enters its host through a projectile tube that is expelled at high velocity. Molecular biology and genomic studies on microsporidia have also drawn attention to many other unusual features, including a unique core carbon metabolism and genomes in the size range of bacteria. These seemingly simple parasites were once thought to be the most primitive eukaryotes; however, we now know from molecular phylogeny that they are highly specialized fungi. The fungal nature of microsporidia indicates that microsporidia have undergone severe selective reduction permeating every level of their biology: From cell structures to metabolism, and from genomics to gene structure, microsporidia are reduced.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver BC, V6T 1Z4, Canada.
| | | |
Collapse
|
21
|
Barry JD, Ginger ML, Burton P, McCulloch R. Why are parasite contingency genes often associated with telomeres? Int J Parasitol 2003; 33:29-45. [PMID: 12547344 DOI: 10.1016/s0020-7519(02)00247-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contingency genes are common in pathogenic microbes and enable, through pre-emptive mutational events, rapid, clonal switches in phenotype that are conducive to survival and proliferation in hosts. Antigenic variation, which is a highly successful survival strategy employed by eubacterial and eukaryotic pathogens, involves large repertoires of distinct contingency genes that are expressed differentially, enabling evasion of host acquired immunity. Most, but not all, antigenic variation systems make extensive use of subtelomeres. Study of model systems has shown that subtelomeres have unusual properties, including reversible silencing of genes mediated by proteins binding to the telomere, and engagement in ectopic recombination with other subtelomeres. There is a general theory that subtelomeric location confers a capacity for gene diversification through such recombination, although experimental evidence is that there is no increased mitotic recombination at such loci and that sequence homogenisation occurs. Possible benefits of subtelomeric location for pathogen contingency systems are reversible gene silencing, which could contribute to systems for gene switching and mutually exclusive expression, and ectopic recombination, leading to gene family diversification. We examine, in several antigenic variation systems, what possible benefits apply.
Collapse
Affiliation(s)
- J D Barry
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, UK.
| | | | | | | |
Collapse
|
22
|
Brugere JF, Cornillot E, Bourbon T, Metenier G, Vivarès CP. Inter-strain variability of insertion/deletion events in the Encephalitozoon cuniculi genome: a comparative KARD-PFGE analysis. J Eukaryot Microbiol 2002; Suppl:50S-55S. [PMID: 11906078 DOI: 10.1111/j.1550-7408.2001.tb00451.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We applied a two-dimensional pulsed-field gel electrophoresis procedure to the genomes of two karyotype variants assigned to two different strains of the microsporidian Encephalitozoon cuniculi, termed D (strain III) and F (strain II). Data obtained for BssHII and MluI restriction fragment length polymorphisms in each chromosome are compiled and compared to the reference strain I variant A. Six Insertion/Deletion (InDels) are found in subterminal position, some of these being characteristic of either D or F. Like in strain 1, the terminal fragments extending between each telomere and rDNA locus are conserved in length for each chromosome. They are however smaller than in reference variant. This size reduction is estimated to be 2.5 kbp for the strain III isolate and 3.5 kbp for the strain II isolate. We hypothesize that for the three E. cuniculi strains, all chromosome extremities are prone to a constant process of sequence homogenization through mitotic recombination between conserved regions.
Collapse
Affiliation(s)
- J F Brugere
- Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | | | | | |
Collapse
|
23
|
Mittleider D, Green LC, Mann VH, Michael SF, Didier ES, Brindley PJ. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. J Eukaryot Microbiol 2002; 49:393-401. [PMID: 12425527 DOI: 10.1111/j.1550-7408.2002.tb00218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The microsporidian Vittaforma corneae has been reported as a pathogen of the human stratum corneum, where it can cause keratitis, and is associated with systemic infections. In addition to this direct role as an infectious, etiologic agent of human disease, V. corneae has been used as a model organism for another microsporidian, Enterocytozoon bieneusi, a frequent and problematic pathogen of HIV-infected patients that, unlike V. corneae, is difficult to maintain and to study in vitro. Unfortunately, few molecular sequences are available for V. corneae. In this study, seventy-four genome survey sequences (GSS) were obtained from genomic DNA of spores of laboratory-cultured V. corneae. Approximately, 41 discontinuous kilobases of V. corneae were cloned and sequenced to generate these GSS. Putative identities were assigned to 44 of the V. corneae GSS based on BLASTX searches, representing 21 discrete proteins. Of these 21 deduced V. corneae proteins, only two had been reported previously from other microsporidia (until the recent report of the Encephalitozoon cuniculi genome). Two of the V. corneae proteins were of particular interest, reverse transcriptase and topoisomerase IV (parC). Since the existence of transposable elements in microsporidia is controversial, the presence of reverse transcriptase in V. corneae will contribute to resolution of this debate. The presence of topoisomerase IV was remarkable because this enzyme previously had been identified only from prokaryotes. The 74 GSS included 26.7 kilobases of unique sequences from which two statistics were generated: GC content and codon usage. The GC content of the unique GSS was 42%, lower than that of another microsporidian, E. cuniculi (48% for protein-encoding regions), and substantially higher than that predicted for a third microsporidian, Spraguea lophii (28%). A comparison using the Pearson correlation coefficient showed that codon usage in V. corneae was similar to that in the yeasts, Saccharomyces cerevisiae (r = 0.79) and Shizosaccharomyces pombe (r = 0.70), but was markedly dissimilar to E. cuniculi (r = 0.19).
Collapse
Affiliation(s)
- Derek Mittleider
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
24
|
Peuvel I, Peyret P, Méténier G, Vivarès CP, Delbac F. The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi. Mol Biochem Parasitol 2002; 122:69-80. [PMID: 12076771 DOI: 10.1016/s0166-6851(02)00073-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The invasion strategy used by microsporidia is primarily related to spore germination. Small differentiated spores of these fungi-related parasites inject their contents into target cells through the lumen of a rapidly extruded polar tube, as a prerequisite to obligate intracellular development. Previous studies in Encephalitozoon species that infect mammals have identified two major antigenic polar tube proteins (PTP1 and PTP2) which are predicted to contribute to the high tensile strength of the polar tube via an assembly process dependent on disulfide linkages. By immunoscreening of a cDNA library, we found that a novel PTP is encoded by a single transcription unit (3990 bp) located on the chromosome XI of E. cuniculi. PTP3 is predicted to be synthesized as a 1256-amino acid precursor with a cleavable signal peptide. The mature protein lacks cysteine residue and its large acidic core is flanked by highly basic N- and C-terminal regions. Immunolocalization data indicated that PTP3 is involved in the sporoblast-to-spore polar tube biogenesis. A transcriptional up-regulation during sporogony is supported by a strong increase in the relative amount of Ecptp mRNAs within host cells sampled at late post-infection times. To begin to explore polar tube-associated protein interactions, spore proteins were extracted in the presence of SDS and dithiothreitol then incubated with a chemical cross-linker (DSP or sulfo-EGS). A large multimeric complex was formed and shown to contain PTP1, PTP2 and PTP3 with a few other proteins. PTP3 is hypothesized to play a role in the control of the polar tube extrusion as part of a specific response to ionic stimuli.
Collapse
Affiliation(s)
- Isabelle Peuvel
- Equipe Parasitologie Moléculaire et Cellulaire, Laboratoire Biologie des Protistes, UMR CNRS 6023, Université Blaise Pascal, Aubiere, France
| | | | | | | | | |
Collapse
|
25
|
Cornillot E, Metenier G, Vivares CP, Dassa E. Comparative analysis of sequences encoding ABC systems in the genome of the microsporidian Encephalitozoon cuniculi. FEMS Microbiol Lett 2002; 210:39-47. [PMID: 12023075 DOI: 10.1111/j.1574-6968.2002.tb11157.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microsporidia are amitochondriate eukaryotic microbes with fungal affinities and a common status of obligate intracellular parasites. A set of 13 potential genes encoding ATP-binding cassette (ABC) systems was identified in the fully sequenced genome of Encephalitozoon cuniculi. Our analyses of multiple alignments, phylogenetic trees and conserved motifs support a distribution of E. cuniculi ABC systems within only four subfamilies. Six half transporters are homologous to the yeast ATM1 mitochondrial protein, a finding which is in agreement with the hypothesis of a cryptic mitochondrion-derived compartment playing a role in the synthesis and transport of Fe-S clusters. Five half transporters are similar to the human ABCG1 and ABCG2 proteins, involved in regulation of lipid trafficking and anthracyclin resistance respectively. Two proteins with duplicated ABC domains are clearly candidate to non-transport ABC systems: the first is homologous to mammalian RNase L inhibitor and the second to the yeast translation initiation regulator GCN20. An unusual feature of ABC systems in E. cuniculi is the lack of homologs of P-glycoprotein and other ABC transporters which are involved in multiple drug resistance in a large number of eukaryotic microorganisms.
Collapse
Affiliation(s)
- Emmanuel Cornillot
- Parasitologie moléculaire et cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
26
|
Bonafonte MT, Stewart J, Mead JR. Identification of two putative ATP-cassette genes in Encephalitozoon intestinalis. Int J Parasitol 2001; 31:1681-5. [PMID: 11730796 DOI: 10.1016/s0020-7519(01)00307-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently existing chemotherapeutic compounds are limited and few are effective for treating microsporidiosis. It is possible that resistance of Encephalitozoon to some drugs occurs by efflux mechanisms similar to those previously described for mammalian tumour cells, bacteria or protozoal parasites such as Plasmodium, Leishmania and Entamoeba histolytica. The data in the present study suggest that Encephalitozoon intestinalis contains at least one multidrug resistance gene. We report here two complete sequences EiABC1 and EiABC2, encoding different ATP-binding cassette genes from E. intestinalis, including a P-gp.
Collapse
Affiliation(s)
- M T Bonafonte
- Medical Research 151, Veterans Affairs Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | |
Collapse
|
27
|
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001; 414:450-3. [PMID: 11719806 DOI: 10.1038/35106579] [Citation(s) in RCA: 741] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microsporidia are obligate intracellular parasites infesting many animal groups. Lacking mitochondria and peroxysomes, these unicellular eukaryotes were first considered a deeply branching protist lineage that diverged before the endosymbiotic event that led to mitochondria. The discovery of a gene for a mitochondrial-type chaperone combined with molecular phylogenetic data later implied that microsporidia are atypical fungi that lost mitochondria during evolution. Here we report the DNA sequences of the 11 chromosomes of the approximately 2.9-megabase (Mb) genome of Encephalitozoon cuniculi (1,997 potential protein-coding genes). Genome compaction is reflected by reduced intergenic spacers and by the shortness of most putative proteins relative to their eukaryote orthologues. The strong host dependence is illustrated by the lack of genes for some biosynthetic pathways and for the tricarboxylic acid cycle. Phylogenetic analysis lends substantial credit to the fungal affiliation of microsporidia. Because the E. cuniculi genome contains genes related to some mitochondrial functions (for example, Fe-S cluster assembly), we hypothesize that microsporidia have retained a mitochondrion-derived organelle.
Collapse
Affiliation(s)
- M D Katinka
- Genoscope, UMR CNRS 8030, CP 5706, 91057 Evry cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fast NM, Keeling PJ. Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrion-derived carbon metabolism in microsporidia. Mol Biochem Parasitol 2001; 117:201-9. [PMID: 11606230 DOI: 10.1016/s0166-6851(01)00356-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsporidia are highly adapted eukaryotic intracellular parasites that infect a variety of animals. Microsporidia contain no recognisable mitochondrion, but recently have been shown to have evolved from fungi and to possess heat shock protein genes derived from mitochondria. These findings make it clear that microsporidian ancestors were mitochondrial, yet it remains unknown whether they still contain the organelle, and if so what its role in microsporidian metabolism might be. Here we have characterised genes encoding the alpha and beta subunits of pyruvate dehydrogenase complex E1 (PDH, EC 1.2.4.1) from the microsporidian Nosema locustae. All other amitochondriate eukaryotes studied to date have lost the PDH complex and replaced it with pyruvate:ferredoxin oxidoreductase (PFOR). Nevertheless, molecular phylogeny shows that these Nosema enzymes are most closely related to mitochondrial PDH from other eukaryotes, demonstrating that elements of mitochondrial metabolism have been retained in microsporidia, and that PDH has not been wholly lost. However, there is still no evidence for a mitochondrion in microsporidia, and neither PDH subunit is predicted to encode an amino terminal leader sequence that could function as a mitochondrion-targeting transit peptide, raising questions as to whether these proteins function in a relic organelle or in the cytosol. Moreover, it is also unclear whether these proteins remain part of the PDH complex, or whether they have been retained for another purpose. We propose that microsporidia may utilise a unique pyruvate decarboxylation pathway involving PDH, demonstrating once again the diversity of core metabolism in amitochondriate eukaryotes.
Collapse
Affiliation(s)
- N M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|